1. Abel, M. Gelfand--Mazur algebras. In Topological Vector Spaces, Algebras and Related Areas. Hamilton, ON, 1994, 116–129; Longman Group Limited, Harlow, 1994.
2. Abel, M. Advertive topological algebras. In General Topological Algebras. Tartu, 1999, 14–24; Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.
3. Abel, M. Descriptions of the topological radical in topological algebras. In General Topological Algebras. Tartu, 1999, 25–31; Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.
4. Abel, M. Survey of results on Gelfand–Mazur algebras. In Non-normed Topological Algebras. Rabat, 2000, 14–25; E. N. S. Takaddoum Publ., Rabat, 2004.
5. Abel, M. Inductive limits of Gelfand–Mazur algebras. Int. J. Pure. Appl. Math., 2004, 16(3), 363–378.
6. Abel, M. and Żelazko, W. Topologicaly invertible elements and the topological spectrum. Bull. Pol. Acad. Sci. Math., 2006, 107(3–4), 257–271.
doi:10.4064/ba54-3-7
7. Akkar, M. and Nassir, C. Continuité automatique dans les limites inductives localement convexes de Q-algèbres de Fréchet. Ann. Sci. Math. Québec, 1995, 19, 115–130.
8. Akkar, M., Beddaa, A., and Oudadess, M. Sur un classe d’algébres topologiques. Bull. Belg. Math. Soc. Simon Stevin, 1996, 3(1), 13–24.
9. Akkar, M., Beddaa, A., and Oudadess, M. Topologically invertible elements in metrizable algebras. Indian J. Pure Appl. Math., 1996, 27(2), 1–5.
10. Allan, G. R., Dales, H. G., and McClure, J. P. Pseudo-Banach algebras. Studia Math., 1971, XL, 55–69.
11. Arizmendi-Peimbert, H. and Carrillo-Hoyo, A. On the topological invertible elements of a topological algebra. Math. Proc. R. Ir. Acad.}, 2007, 107(1), 73–80.
doi:10.3318/PRIA.2007.107.1.73
12. Arizmendi, H., Carillo, A., and Palacios, L. On Qt-algebras. In Topological Algebras and Applications, 49–55; Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007.
13. Atzmon, A. An operator without invariant subspaces on a nuclear Fréchet space. Ann. Math., 1983, 1(2), 669–684.
doi:10.2307/2007039
14. Balachandran, V. K. Topological Algebras. North-Holland Math. Stud., 185. North-Holland Publ. Co., Amsterdam, 2000.
15. Batt, S. J. and Thatte, A. D. On topological invertibility. Indian J. Pure Appl. Math., 1984, 15(12), 1308–1312.
16. Beckenstein, B., Narici, L., and Suffel, Ch. Topological Algebras. North-Holland Math. Stud., 24. North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977.
17. Beddaa, A. Algébres localement convexes advertiblement complétes et continuitè automatique de morphismes. Thése Sci. Math., Univ. Mohamed V, Rabat, 1997.
18. Beddaa, A. Caractérisations des tQ-algebres (manuscript).
19. Choukri, R., El Kinani, A., and Oudadess, M. Inversibilitè topologique et probléme de l’idèal fermè. Bol. Soc. Mat. Mexicana (3), 2003, 9(1), 109–117.
20. Fragoulopoulou, M. Topological Algebras with Involution. North-Holland Mathematics Studies, 200. Elsevier Science B.V., Amsterdam, 2005.
21. Fuster, R. and Marquina, A. Geometric series in incomplete normed algebras. Amer. Math. Monthly, 1984, 91, 49–51.
doi:10.2307/2322171
22. Hadjigeorgiou, R. I. Topological Q-algebras, more (submitted).
23. Horváth, J. Topological Vector Spaces and Distributions I. Addison-Wesley Publ. Co., Reading, Mass.–London–Don Mill, Ont., 1966.
24. Husain, T. Multiplicative Functionals on Topological Algebras. Research Notes in Math., 85. Pitman Advanced Publishing Program, Boston–London–Melbourne, 1983.
25. Luha, K. Topological invertibility in topological algebras. Tartu Ülikooli Toimetised, 1992, 940, 71–74.
26. Najmi, A. Topologically Q-algebras. Bull. Greek Math. Soc. (in press).
27. Oudades, M. Examples of infrasequential algebras. In Topological Vector Spaces, Algebras and Related Areas. Hamilton, ON, 1994, 93–101; Pitman Res. Notes Math.
28. Rudin, W. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973.
29. Schaefer, H. H. and Wolff, M. P. Topological Vector Spaces. Second edition. Graduate Texts in Math., 3. Springer-Verlag, New York, 1999.
30. Williamson, J. H. On topologizing of the field C(t). Proc. Amer. Math. Soc., 1954, 5, 729–734.
doi:10.2307/2031857
31. Żelazko, W. Topological simplicity of a certain ℒF-algebra. Period. Math. Hungar., 1997, 35(1–2), 145–148.
doi:10.1023/A:1004313212533
32. Żelazko, W. When a commutative unital F-algebra has a dense principal ideal. In Topological Algebras and Their Applications. Contemp. Math., 341. Amer. Math. Soc., Providence, RI, 2004, 133–137.
33. Żelazko, W. A characterization of Q-algebras of type F. Studia Math., 2004, 165(1), 73–79.
doi:10.4064/sm165-1-6
34. Żelazko, W. F-algebras: some results and open problems. In Functional Analysis and Its Applications. North-Holland Math. Stud., 197. Elsevier, Amsterdam, 2004, 317–326.
doi:10.1016/S0304-0208(04)80180-4