ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Properties of TQ-algebras; pp. 141–148
PDF | doi: 10.3176/proc.2011.3.01

Authors
Mati Abel, Wiesław Żelazko
Abstract
Several properties of unital left (right) TQ-algebras are described. The conditions when a unital semitopological algebra is a left (right) TQ-algebra are given. It is shown that the space M(A) (of nontrivial continuous multiplicative linear functionals on A) in the Gelfand topology is a compact Hausdorff space for every unital TQ-algebra with a nonempty set M(A) and a commutative complete metrizable unital algebra is a TQ-algebra if and only if all maximal topological ideals of A are closed. Examples of TQ-algebras are given. Open problems are presented.
References

  1. Abel, M. Gelfand--Mazur algebras. In Topological Vector Spaces, Algebras and Related Areas. Hamilton, ON, 1994, 116–129; Longman Group Limited, Harlow, 1994.

  2. Abel, M. Advertive topological algebras. In General Topological Algebras. Tartu, 1999, 14–24; Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.

  3. Abel, M. Descriptions of the topological radical in topological algebras. In General Topological Algebras. Tartu, 1999, 25–31; Math. Stud. (Tartu), 1, Est. Math. Soc., Tartu, 2001.

  4. Abel, M. Survey of results on Gelfand–Mazur algebras. In Non-normed Topological Algebras. Rabat, 2000, 14–25; E. N. S. Takaddoum Publ., Rabat, 2004.

  5. Abel, M. Inductive limits of Gelfand–Mazur algebras. Int. J. Pure. Appl. Math., 2004, 16(3), 363–378.

  6. Abel, M. and Żelazko, W. Topologicaly invertible elements and the topological spectrum. Bull. Pol. Acad. Sci. Math., 2006, 107(3–4), 257–271.
doi:10.4064/ba54-3-7

  7. Akkar, M. and Nassir, C. Continuité automatique dans les limites inductives localement convexes de Q-algèbres de Fréchet. Ann. Sci. Math. Québec, 1995, 19, 115–130.

  8. Akkar, M., Beddaa, A., and Oudadess, M. Sur un classe d’algébres topologiques. Bull. Belg. Math. Soc. Simon Stevin, 1996, 3(1), 13–24.

  9. Akkar, M., Beddaa, A., and Oudadess, M. Topologically invertible elements in metrizable algebras. Indian J. Pure Appl. Math., 1996, 27(2), 1–5.

10. Allan, G. R., Dales, H. G., and McClure, J. P. Pseudo-Banach algebras. Studia Math., 1971, XL, 55–69.

11. Arizmendi-Peimbert, H. and Carrillo-Hoyo, A. On the topological invertible elements of a topological algebra. Math. Proc. R. Ir. Acad.}, 2007, 107(1), 73–80.
doi:10.3318/PRIA.2007.107.1.73

12. Arizmendi, H., Carillo, A., and Palacios, L. On Qt-algebras. In Topological Algebras and Applications, 49–55; Contemp. Math., 427, Amer. Math. Soc., Providence, RI, 2007.

13. Atzmon, A. An operator without invariant subspaces on a nuclear Fréchet space. Ann. Math., 1983, 1(2), 669–684.
doi:10.2307/2007039

14. Balachandran, V. K. Topological Algebras. North-Holland Math. Stud., 185. North-Holland Publ. Co., Amsterdam, 2000.

15. Batt, S. J. and Thatte, A. D. On topological invertibility. Indian J. Pure Appl. Math., 1984, 15(12), 1308–1312.

16. Beckenstein, B., Narici, L., and Suffel, Ch. Topological Algebras. North-Holland Math. Stud., 24. North-Holland Publ. Co., Amsterdam–New York–Oxford, 1977.

17. Beddaa, A. Algébres localement convexes advertiblement complétes et continuitè automatique de morphismes. Thése Sci. Math., Univ. Mohamed V, Rabat, 1997.

18. Beddaa, A. Caractérisations des tQ-algebres (manuscript).

19. Choukri, R., El Kinani, A., and Oudadess, M. Inversibilitè topologique et probléme de l’idèal fermè. Bol. Soc. Mat. Mexicana (3), 2003, 9(1), 109–117.

20. Fragoulopoulou, M. Topological Algebras with Involution. North-Holland Mathematics Studies, 200. Elsevier Science B.V., Amsterdam, 2005.

21. Fuster, R. and Marquina, A. Geometric series in incomplete normed algebras. Amer. Math. Monthly, 1984, 91, 49–51.
doi:10.2307/2322171

22. Hadjigeorgiou, R. I. Topological Q-algebras, more (submitted).

23. Horváth, J. Topological Vector Spaces and Distributions I. Addison-Wesley Publ. Co., Reading, Mass.–London–Don Mill, Ont., 1966.

24. Husain, T. Multiplicative Functionals on Topological Algebras. Research Notes in Math., 85. Pitman Advanced Publishing Program, Boston–London–Melbourne, 1983.

25. Luha, K. Topological invertibility in topological algebras. Tartu Ülikooli Toimetised, 1992, 940, 71–74.

26. Najmi, A. Topologically Q-algebras. Bull. Greek Math. Soc. (in press).

27. Oudades, M. Examples of infrasequential algebras. In Topological Vector Spaces, Algebras and Related Areas. Hamilton, ON, 1994, 93–101; Pitman Res. Notes Math.

Ser., 316. Longman Sci. Tech., Harlow, 1994.

28. Rudin, W. Functional Analysis. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York–Düsseldorf–Johannesburg, 1973.

29. Schaefer, H. H. and Wolff, M. P. Topological Vector Spaces. Second edition. Graduate Texts in Math., 3. Springer-Verlag, New York, 1999.

30. Williamson, J. H. On topologizing of the field C(t). Proc. Amer. Math. Soc., 1954, 5, 729–734.
doi:10.2307/2031857

31. Żelazko, W. Topological simplicity of a certain F-algebra. Period. Math. Hungar., 1997, 35(1–2), 145–148.
doi:10.1023/A:1004313212533

32. Żelazko, W. When a commutative unital F-algebra has a dense principal ideal. In Topological Algebras and Their Applications. Contemp. Math., 341. Amer. Math. Soc., Providence, RI, 2004, 133–137.

33. Żelazko, W. A characterization of Q-algebras of type F. Studia Math., 2004, 165(1), 73–79.
doi:10.4064/sm165-1-6

34. Żelazko, W. F-algebras: some results and open problems. In Functional Analysis and Its Applications. North-Holland Math. Stud., 197. Elsevier, Amsterdam, 2004, 317–326.
doi:10.1016/S0304-0208(04)80180-4

35. Żelazko, W. A conjecture concerning Williamson type algebras. In ICTAA 2008. Tartu, 2008, 112–116; Math. Stud. (Tartu), 4. Est. Math. Soc., Tartu, 2008.
Back to Issue