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Abstract. Several properties of unital left (right) T Q-algebras are described. The conditions when a unital semitopological algebra
is a left (right) T Q-algebra are given. It is shown that the space M(A) (of nontrivial continuous multiplicative linear functionals on
A) in the Gelfand topology is a compact Hausdorff space for every unital T Q-algebra with a nonempty set M(A) and a commutative
complete metrizable unital algebra is a T Q-algebra if and only if all maximal topological ideals of A are closed. Examples of
T Q-algebras are given. Open problems are presented.
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1. INTRODUCTION

1. Let K be one of the fields R of a real number or C
of complex numbers and A a topological algebra over K
with separately continuous multiplication and with the
unit element eA (in short, a semitopological algebra).

An element a ∈ A is topologically left (right)
invertible in A if1 eA ∈ Aa (respectively, eA ∈ aA), or
equivalently, there exists a net (aλ )λ∈Λ of elements of
A (the topological left (respectively, right) inverse for a)
such that (aλ a)λ∈Λ (respectively, (aaλ )λ∈Λ) converges
to eA in A. We will denote by Gt

l(A) (respectively, by
Gt

r(A)) the set of all topologically left (right) invertible
elements in A and by Gtb

l (A) (respectively, by Gtb
r (A))

the set of all elements in Gt
l(A) (in Gt

r(A)) for which there
exists a topological left (respectively right) inverse that is
bounded.

Moreover, let Gt(A) = Gt
l(A) ∩ Gt

r(A), Gtb(A) =
Gtb

l (A) ∩Gtb
r (A) and Gt(A) be the set of all elements

a ∈ A for which there is a net (aλ )λ∈Λ of elements of
A such that2 (aλ a)λ∈Λ and (aaλ )λ∈Λ converge to eA in
A. It is clear that Gt(A)⊂Gt(A) and Gtb(A)⊂Gt(A) for

complete pseudoconvex algebra A (see [11], Theorem 3),
but it is not known whether Gt(A) 6= Gt(A) in general.

In addition, let Gl(A) (Gr(A)) denote the set of all
left (respectively, right) invertible elements in A and
G(A) = Gl(A)∩Gr(A). Then G(A)⊂Gt(A)⊂Gt(A). In
particular, when G(A) = Gt(A), A is called an invertive
algebra3 (see [2], p. 14) and a topological invertible
element is said to be proper (see [34], p. 323) if it is non-
invertible. Properties of topologically invertible elements
have been discussed in several papers, for example,
in [2], [6], [8], [9], [11], [12], [15], [17], [19], [25], and
[31]–[34].

We shall say that a semitopological algebra A is a
left (right) T Q-algebra if Gt

l(A) (respectively, Gt
r(A)) is

open in A, a T Q-algebra if both sets Gl
t(A) and Gr

t (A)
are open in A, a TQ-algebra if Gt(A) is open in A, and
a Q-algebra if the set G(A) is open in A. It is easy to
see that every invertive T Q-algebra is a Q-algebra but
there exist T Q-algebras which are not Q-algebras (see
Examples (c) and (e)). Call a T Q-algebra proper if it is
not a Q-algebra.

2. Let A be a unital semitopological algebra, m(A)
the set of all closed two-sided ideals in A, which are

∗ Corresponding author, mati.abel@ut.ee
1 Here and later on every U denotes the closure of U in A.
2 That is, the net (aλ )λ∈Λ is the same in (aλ a)λ∈Λ and (aaλ )λ∈Λ.
3 It is known (see [2], Corollary 2) that every complete unital locally m-pseudoconvex algebra is an invertive algebra, but every

commutative complete metrizable unital algebra with a discontinuous inverse is not (see [32], Proposition 4).
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maximal as left or right ideals in A. A semitopological
algebra A over K is called a Gelfand–Mazur algebra
if A/M (in the quotient topology) is topologically
isomorphic to K for each M ∈ m(A), and a simplicial
algebra if every closed left (right) ideal of A is contained
in some closed maximal left (respectively, right) ideal of
A. The main classes of Gelfand–Mazur algebras have
been described in [1] and [4]. It is known (see4 [5],
Theorem 4) that every commutative unital locally
m-pseudoconvex5 Hausdorff algebra is simplicial.

3. Let A be a semitopological algebra with a unit
element eA, M(A) the set of all nontrivial continuous
multiplicative linear functionals on A,

σ t
l (x) = {λ ∈ C : x−λeA 6∈ Gt

l(A)}

(σ t
r(x) = {λ ∈ C : x−λeA 6∈ Gt

r(A)})
the left (respectively, right) topological spectrum of x ∈
A, and

ρ t
l (x) = sup{|λ | : λ ∈ σ t

l (x)}
(respectively, ρ t

r(x) = sup{|λ | : λ ∈ σ t
r(x)})

the left (respectively, right) topological spectral radius
of x ∈ A. Then the topological spectrum

σ t(x) = {λ ∈ C : x−λeA 6∈ Gt(A)}

of x ∈ A, described in [6], coincides with the set σ t
l (x)∪

σ t
r(x) in C, and the topological spectral radius

ρ t(x) = sup{|λ | : λ ∈ σ t(x)}

of x ∈ A is equal to max{ρ t
l (x),ρ

t
r(x)}. If M(A) is not

empty, then

{ϕ(x) : ϕ ∈M(A)} ⊂ σ t(x)

for each x ∈ A. In particular, when

{ϕ(x) : ϕ ∈M(A)}= σ t(x)

for each x ∈ A, we say that A has the functional
topological spectrum. In this case

ρ t(x) = sup{|ϕ(x)| : ϕ ∈ σ t(x)}

for each x ∈ A.
4. Several properties of unital T Q-algebras are

presented in the present paper. The conditions when a

unital semitopological algebra is a T Q-algebra are given.
It is shown that the space M(A) in the Gelfand topology
is a compact Hausdorff space for every unital T Q-algebra
with a nonempty set M(A), and a commutative complete
metrizable unital algebra is a T Q-algebra if and only
if all maximal topological ideals of A are closed. In
addition, examples of T Q-algebras are given and several
open problems are presented.

2. EXAMPLES OF T Q-ALGEBRAS

Now we give some examples of T Q-algebras.

(a) Strongly sequential algebras. Every unital
(commutative or not) normed algebra (similarly, every
unital p-normed algebra with p∈ (0,1]) is a TQ-algebra,
hence also a T Q-algebra (see [12], Proposition 2.6).

More generally, every strongly sequential algebra6

A is a TQ-algebra. Indeed, let U be a neighbourhood
of zero in A such that for each x ∈U the sequence (xn)
converges to zero and let x0 ∈U be an arbitrary element.
Since
( n

∑
k=0

xk
0

)
(eA−x0)−eA =(eA−x0)

( n

∑
k=0

xk
0

)
−eA =−xn+1

0

(1)
and

lim
n→∞

xn
0 = θA,

eA −U ∈ Gt(A). Hence, A is a TQ-algebra and a
T Q-algebra by Corollary 2 below.

(b) Metrizable pseudo-Banach algebras7. It is
known (see [27], Proposition 4.6) that every metrizable
pseudo-Banach locally convex algebra is a strongly
sequential algebra. Hence, every such topological
algebra is a TQ-algebra and thus a T Q-algebra as well.

(c) The algebra (P(t); τc). Let P(t) be the algebra
of all complex polynomials in one variable and τc for
each c > 1 the locally convex topology on P(t) described
in [30]. All algebraic operations in P(t) are defined
pointwise. Then (P(t),τc) is a commutative unital locally
convex (not normed) T Q-algebra (see [12], Example 2).

(d) The algebra P(T). Let T = {λ ∈ C : |λ | = 1}
and P(T) be the unital algebra (with pointwise algebraic
operations) of all polynomials on T with complex
coefficients endowed with the uniform norm topology.
Then P(T) is an incomplete normed algeba which is not
a Q-algebra (see [20], p. 73, or [21], p. 50). Hence, P(T)
is a T Q-algebra which is not a Q-algebra.

4 For complete algebras see [3], Proposition 2, or [14], Corollary 7.1.14, and for locally m-convex algebras see [16], pp. 321–322.
5 A semitopological algebra A is locally m-pseudoconvex if its topology is given by a family of nonhomogeneous sub-

multiplicative seminorms (see, for example, [1] or [4]). When every seminorm in this family is homogeneous, then A is a
locally m-convex algebra.

6 A topological algebra A is strongly sequential (see, for example, [24], p. 51) if there exists a neighbourhood U of zero in A
such that for each x ∈U the sequence (xn) converges in A to zero. It is known (see [24], Theorem 3.10) that a locally
m-convex Fréchet algebra is strongly sequential if and only if it is a Q algebra. Examples of strongly sequential algebras can
be found in [27].

7 The notion of pseudo-Banach algebras was introduced in [10], p. 56.
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(e) Topologically simple algebras. A commutative
semitopological algebra is topologically simple if it
has no closed proper non-zero ideals. Examples of
commutative unital complete non-metrizable locally
convex topologically simple Hausdorff algebras have
been given in [13] and in [31]. It is shown in [31],
Proposition 1, that every commutative unital topological
algebra is topologically simple if and only if Gt(A) =
A\{θA}. Hence, topological algebras in [13] and in [31]
described above are commutative T Q-algebras.

3. PROPERTIES OF T Q-ALGEBRAS

We shall show that unital T Q-algebras are very similar to
unital Q-algebras. First we prove the following

Proposition 1. Let A be a unital left (right or two-sided)
T Q-algebra. Then

A = {x ∈ A : ρ t
l (x) < ∞}

(respectively, A = {x ∈ A : ρ t
r(x) < ∞}

and
A = {x ∈ A : ρ t(x) < ∞}).

Proof. Let A be a unital left T Q-algebra. Then Gt
l(A) is a

neighbourhood of eA in A. Therefore, there is a balanced
neighbourhood U of zero in A such that eA +U ⊂ Gt

l(A)
and for each x ∈ A there is an εx > 0 such that λx ∈U
whenever |λ | 6 εx. Let µ ∈ (0,εx) be a fixed number.
Suppose that ρ t

l (x) > 1
µ . Then there is a number λ ∈

σ t
l (x) such that |λ | > 1

µ . On the other hand, since
| 1

λ µ |< 1, then

x−λeA =−λ
(

eA− 1
λ

x
)

=−λ
(

eA +
(
− 1

λ µ

)
µx

)

∈ −λ (eA +U)⊂−λGt
l(A)⊂ Gt

l(A).

This means that λ 6∈ σ t
l (x). The condition shows that

ρ t
l (x) 6 1

µ < ∞ for each x ∈ A.
Proofs for other cases are similar. ¤

Corollary 1. Let A be a left (right) T Q-algebra. Then
σ t

l (x), σ t
r(x), and σ t(x) are compact subsets in C for

each x ∈ A.

Proof. Let A be a left T Q-algebra, x ∈ A, and λ0 ∈
C \σ t

l (x). Then x−λ0eA ∈ Gt
l(A). Since the map λ 7→

x−λeA is continuous at λ0 and Gt
l(A) is a neighbourhood

of x−λ0eA, then there is a neighbourhood O(λ0) of λ0 in
C such that x−λeA ∈ Gt

l(A) for each λ ∈ O(λ0). Hence
O(λ0)⊂ C\σ t

l (x). Therefore, σ t
l (x) is a closed set in C.

By Proposition 1, σ t
l (x) is a compact subset of C.

Proofs for a right T Q-algebra and a T Q-algebra are
similar. ¤

Theorem 1. Let A be a unital semitopological algebra.
Then the following statements are equivalent:

(a) A is a left (right) T Q-algebra;
(b) the set Gt

l(A) (respectively, Gt
r(A)) is a

neighbourhood of eA in A;
(c) eA is an interior point of Gt

l(A) (respectively,
Gt

r(A));
(d) the interior of Gt

l(A) (respectively, the interior of
Gt

r(A)) is not empty;
(e) Sl(A) = {x∈A : ρ t

l (x) 6 1} (respectively, Sr(A) =
{x ∈ A : ρ t

r(x) 6 1}) is a neighbourhood of zero in A;
(f) there is a balanced neighbourhood of zero V in

A such that8 ρ t
l (x) 6 gV (x) (respectively, ρ t

r(x) 6 gV (x))
for each x ∈ A;

(g) the topological left spectral radius ρ t
l

(respectively, right spectral radius ρ t
r) is upper semi-

continuous;
(h) the topological left spectral radius ρ t

l
(respectively, right spectral radius ρ t

r) is continuous
at θA.

Proof. The implications (a)⇒ (b)⇒ (c)⇒ (d) are trivial.
(d) ⇒ (a) There is a non-void open subset U ⊂

Gt
l(A). Let z0 ∈U and put

Z = {z ∈ A : z0z ∈U}.

Then e∈ Z and, by the continuity of multiplication, there
is an open neighbourhood V of e with z0V ⊂ U. Let
y ∈ V such that z0y ∈ U ⊂ Gt

l(A). Then there is a net
(yλ )λ∈Λ in A with (yλ z0y)λ∈Λ → e. Thus y ∈ Gt

l(A) and
so V ⊂ Gt

l(A).
Let now x0 be an arbitrary element of Gt

l(A). Then
there is a net (xλ )λ∈Λ such that (xλ x0)λ∈Λ → e, and so
for some λ0 we have xλ0 x0 ∈V . Again, by the continuity
of multiplication, there is an open neighbourhood V0 of
x0 with xλ0V0 ⊂ V ⊂ Gt

l(A). It means that all elements
in V0 are topologically left invertible. Since the element
x0 was chosen arbitrarily, the set Gt

l(A) is open and the
implication follows.

(b) ⇒ (e) Let Gt
l(A) be a neighbourhood of eA in A.

Then there exists a balanced neighbourhood U of zero
such that eA + U ⊂ Gt

l(A). Suppose that there is an
element u ∈ U \ Sl(A). Then ρ t

l (u) > 1. Therefore
there is a number λ ∈ σ t

l (u) such that |λ | > 1. Hence
u−λeA 6∈ Gt

l(A). On the other hand, since u ∈U , U is
balanced, and | 1

λ |< 1, then

u−λeA =−λ
[
eA +

(
− 1

λ

)
u
]

∈ −λ (eA +U)⊂−λGt
l(A)⊂ Gt

l(A).

Therefore, U ⊂ Sl(A). It means that Sl(A) is a
neighbourhood of θA in A.

(e) ⇒ (a) Let A be a unital topological algebra such
that Sl(A) is a neighbourhood of zero in A. Suppose that

8 Here and later on gV (x) = inf{λ > 0 : x ∈ λV} for each x ∈ A, that is, gV is the Minkowski functional of V .
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there is an element u ∈ Sl(A) such that eA + 2u 6∈ Gt
l(A).

Then 2 ∈ σ t
l (u) implies ρ t

l (u) > 2, which is impossible.
Hence, eA + 2Sl(A) ⊂ Gt

l(A). Consequently, A is a left
T Q-algebra.

(b) ⇒ (f) Let x ∈ A and Gt
l(A) be a neighbourhood

of eA. Then, there is a balanced neighbourhood V of zero
such that eA +V ⊂ Gt

l(A). If µ is an arbitrary positive
number such that x ∈ µV , then from x−µeA =−µ(eA−
1
µ x)∈Gt

l(A) it follows that µ 6∈ σ t
l (x). Therefore ρ t

l (x) <

µ for each µ > 0 such that x ∈ µV . Hence,

ρ t
l (x) 6 inf{λ > 0 : u ∈ λV}= gV (u).

(f) ⇒ (b) Suppose that there is a balanced
neighbourhood V of zero in A such that ρ t

l (x) 6 gV (x)
for each x ∈ A. If x ∈ 1

2V is an arbitrary element, then
ρ t

l (x) 6 gV (x) 6 1
2 < 1. Hence, 1 6∈ σ t

l (x). It follows
from eA + 1

2V ⊂ Gt
l(A) that Gt

l(A) is a neighbourhood of
eA in A.

(a)⇒ (g) Let A be a left T Q-algebra. Then ρ t
l (x) < ∞

for each x ∈ A by Proposition 1. To show that the set
{x ∈ A : ρ t

l (x) > α} is closed in A for each α ∈ R, it is
enough to show that {x ∈ A : ρ t

l (x) < α} is open in A
for each α ∈ (0,∞) (because {x ∈ A : ρ t

l (x) > α} = A if
α 6 0). For this, let α0 ∈ (0,∞) and x0 ∈ A be such that
ρ t

l (x0) < α0. Then there is a number β ∈ R such that
ρ t

l (x0) < β < α0.
Let Φ : A×K→ A be a map defined by Φ(x,µ) =

x− µeA for each (x,µ) ∈ A×K, and Ψ : A×K→ A be
a map defined by Ψ(x,µ) = eA − µx for each (x,µ) ∈
A × K. Since Φ and Ψ are continuous maps, the
sets Φ−1(Gt

l(A)) and Ψ−1(Gt
l(A)) are open in A×K.

Therefore from (x0,0) ∈ Ψ−1(Gt
l(A)) it follows that

there exists a neighbourhood O(x0) of x0 in A and a
neighbourhood U of zero in K such that O(x0)×U ⊂
Ψ−1(Gt

l(A)). Moreover, U defines a number M > 0
such that µ−1 ∈U whenever |µ| > M. We can assume
that M > β . Let D = {ν ∈ K : β 6 |ν | 6 M}. Since
(x0,ν) ∈ Φ−1(Gt

l(A)) for each ν ∈ D, then for each
fixed ν ∈ D there is a neighbourhood Oν(x0) of x0
and an open neighbourhood U(ν) of ν in K such that
Oν(x0)×U(ν) ⊂ Φ−1(Gt

l(A)). It is clear that D is a
compact subset of K. Therefore there exist n ∈ N and
ν1, . . . ,νn ∈ D such that the sets U(ν1), . . .U(νn) cover
D. Let now

O′(x0) = O(x0)∩
( n⋂

k=1

Oνk(x0)
)
.

Then O′(x0) is a neighbourhood of x0 in A. If |α0|> M,
then

(x,α−1
0 ) ∈ O(x0)×U ⊂Ψ−1(Gt

l(A))

or x− α0eA ∈ Gt
l(A) for each x ∈ O′(x0). Moreover,

if α0 ∈ D, then α0 ∈ U(νk) for some k ∈ {1, . . . ,n}.

Since (x,α0) ∈ Oνk(x0) ×U(νk) ⊂ Φ−1(Gt
l(A)), then

x−α0eA ∈ Gt
l(A) for each x ∈ O′(x0) as well. Hence,

ρ t
l (x) < α0 for each x ∈ O′(x0). Thus

O′(x0)⊂ {x ∈ A : ρ t
l (x) < α0}.

It means that ρ t
l is upper semi-continuous.

(g) ⇒ (h) Trivial because ρ t
l (θA) = 0.

(h) ⇒ (d) By condition (g) it is clear that U =
{x ∈ A : ρ t

l (x) < 1} is a neighbourhood of zero in A.
Suppose that eA +U 6⊂ Gt

l(A). Then there is an element
u0 ∈ U such that eA + u0 6∈ Gt

l(A). Then −1 ∈ σ t
l (x),

but this is impossible because ρ t
l (u0) < 1 . Therefore,

eA +U ⊂ Gt
l(A). Consequently, eA is an interior point of

Gt
l(A).

The proof for a right T Q-algebra A is similar. ¤
Corollary 2. Let A be a unital semitopological algebra.
Then the following statements are equivalent:

(a) A is a T Q-algebra;
(b) the set Gt(A) is a neighbourhood of eA in A;
(c) eA is an interior point of Gt(A);
(d) the interior of Gt(A) is not empty;
(e) St(A) = {x ∈ A : ρ t(x) 6 1} is a neighbourhood

of zero in A;
(f) there is a balanced neighbourhood of zero V in A

such that ρ t(x) 6 gV (a) for each x ∈ A;
(g) the topological spectral radius ρ t is upper semi-

continuous;
(h) the topological spectral radius ρ t is continuous

at θA.

Theorem 2. Let A be a unital m-barrelled semitopo-
logical algebra9with a nonempty set M(A). If

(1) A = {x ∈ A : ρ t(x) < ∞}
and

(2) σ t(x) = {ϕ(x) : ϕ ∈M(A)} for each x ∈ A,
then A is a T Q-algebra.

Proof. Let A be a unital semitopological m-barrelled
algebra with nonempty M(A), x ∈ A, and let

O1 = {λ ∈ C : |λ |6 1}
and

A1 =
⋂

ϕ∈M(A)

ϕ−1(O1).

Then A1 is a closed, idempotent, convex, and balanced
set in A. Let

δ = sup
ϕ∈M(A)

|ϕ(x)|.

Then δ ∈ R by condition (1). If ϕ(x) = 0 for each
ϕ ∈ M(A), then λx ∈ A1 for each λ ∈ R. If δ >
0, then λx ∈ A1 whenever |λ | 6 1

δ . Hence, A1 is an
absorbing set. Thus, A1 is a neighbourhood of zero
in A, because A is m-barrelled. Since A1 ⊂ St(A) by
assumption (2), then St(A) is also a neighbourhood of
zero in A. Consequently, A is a unital T Q-algebra by
Corollary 2. ¤

9 That is, a semitopological algebra in which every closed, idempotent, convex, balanced, and absorbing subset is a
neighbourhood of zero.
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It is known (see [6], Corollaries 9 and 10) that
every element in a commutative unital simplicial Gel-
fand–Mazur algebra (in particular, in a commutative
unital locally m-pseudoconvex Hausdorff algebra) has a
functional spectrum. Therefore, we have

Corollary 3. Let A be a commutative unital simplicial
m-barrelled Gelfand–Mazur algebra such that M(A)
is nonempty (in particular, a commutative unital
m-barrelled locally m-pseudoconvex Hausdorff algebra).
If

A = {x ∈ A : ρ t(x) < ∞},
then A is a T Q-algebra.

To describe the properties of the set M(A) for a left
(right) T Q-algebra A, we need the following result.

Lemma 1. (a) Let A be a unital semitopological algebra
and let x ∈ A. If M(A) is nonempty, then ϕ(x) 6= 0 for
each ϕ ∈ M(A) if x ∈ Gt

l(A) ∪Gt
r(A) and for each10

ϕ ∈M#(A) if x ∈ Gl(A)∪Gr(A).
(b) Let A be a commutative unital simplicial

Gelfand–Mazur algebra and x ∈ A. If ϕ(x) 6= 0 for each
ϕ ∈M(A), then x ∈ Gt(A).

Proof. (a) Let A be a topological algebra and x ∈
Gt

l(A)∪Gt
r(A). Then x ∈ Gt

l(A) or x ∈ Gt
r(A). Therefore

there is a net (xλ )λ∈Λ in A such that (xλ x)λ∈Λ converges
to eA in A or there is a net (yµ)µ∈M in A such that
(xyµ)µ∈M converges to eA in A. Hence (ϕ(xλ )ϕ(x))λ∈Λ
and (ϕ(x)ϕ(yµ))µ∈M converge in K to 1 for each ϕ ∈
M(A). Consequently, in both cases ϕ(x) 6= 0 for each
ϕ ∈M(A).

Let now x ∈ Gl(A) ∪ Gr(A). Then x ∈ Gl(A) or
x ∈Gr(A). Therefore, there is an element y ∈ A such that
yx = eA or xy = eA. Hence ϕ(y)ϕ(x) = 1 or ϕ(x)ϕ(y) = 1
for each ϕ ∈M#(A). Consequently, in both cases ϕ(x) 6=
0 for each ϕ ∈M#(A).

(b) See the proof of Proposition 8 in [6]. ¤

Proposition 2. Let A be a unital left (right) T Q-algebra.
If M(A) is not empty, then M(A) is an equicontinuous
subset of the topological dual space A∗ of A.

Proof. Let A be a left T Q-algebra. Then Gt
l(A) is a

neighbourhood of eA in A. Now there is a balanced
neighbourhood U of zero in A such that eA +U ⊂Gt

l(A).
If11 M(A) 6⊂ U◦, then there are ϕ0 ∈ M(A) and a0 ∈
U such that |ϕ0(a0)| > 1. Let λ0 = ϕ0(a0)−1. Then
|λ0|< 1. Therefore eA−λ0a0 ∈ eA +U ⊂ Gt

l(A). On the
other hand, it follows by Lemma 1(a) that eA − λ0a0 6∈
Gt

l(A). Hence, M(A) ⊂ U◦. Therefore M(A) is an
equicontinuous subset of A∗ by Proposition 6 in [23],
p. 200.

The proof for a right T Q-algebra is similar. ¤

Corollary 4. Let A be a unital left (right) T Q-algebra.
If M(A) is not empty, then M(A) is a compact Hausdorff
space in the Gelfand topology.

Proof. M(A) is an equicontinuous subset of A∗ by Pro-
position 2. Therefore M(A) is a relatively compact
subset in the Gelfand topology by the Alaoglu–Bourbaki
theorem. Since M(A) is closed (because A is a unital
algebra12), then M(A) is compact in the Gelfand
topology. ¤

Theorem 3. Let A be a commutative unital simplicial
Gelfand–Mazur algebra (in particular, a commutative
unital locally m-pseudoconvex Hausdorff algebra). If
M(A) is equicontinuous, then A is a left (right)
T Q-algebra.

Proof. Let A be a commutative unital simplicial Gelfand–
Mazur algebra such that M(A) is equicontinuous. Then

U = {a ∈ A : |ϕ(a)|6 1 for each ϕ ∈M(A)}
=

⋂

ϕ∈M(A)

ϕ−1(O1)

is a neighbourhood of zero in A (see [29], p. 83,
result 4.1). Therefore V = 1

2U is also a neighbourhood
of zero in A. To show that eA + V ⊂ Gt

l(A), let x ∈
eA +V . Then |ϕ(x−eA)|6 1

2 for each ϕ ∈M(A). Hence
ϕ(x) 6= 0 for each ϕ ∈ M(A). Therefore, x ∈ Gt

l(A) by
Lemma 1(b) and eA is an interior point of Gt

l(A). We
conclude that A is a left T Q-algebra by Theorem 1. ¤

The following result shows that every non-invertive
left (right) T Q-algebra has dense maximal ideals.

Proposition 3. (a) Let A be a unital semitopological
algebra and il(A) (ir(A)) be the set of all closed left
(respectively, right) ideals in A. Then

Gt
l(A) = A\

⋃

I∈il(A)

I and Gt
r(A) = A\

⋃

I∈ir(A)

I.

(b) A unital left (right) T Q-algebra is a left
(respectively, right) Q-algebra if and only if every
maximal left (respectively, right) ideal of A is closed.

Proof. (a) Let a ∈ Gt
l(A). Then there is a net (aλ )λ∈Λ

in A such that (aλ a)λ∈Λ converges to eA. If a belongs to
some closed left ideal I of A, then aλ a∈ I for each λ ∈Λ.
Hence eA ∈ I, but it is not possible. Consequently,

a ∈ A\
⋃

I∈il(A)

I. (2)

10 Here and later on we denote by M#(A) the set of all non-trivial (not necessarily continuous) multiplicative linear functionals
on A.

11 Here U◦ = {ψ ∈ A∗ : |ψ(a)|6 1 for each a ∈U} is the polar of U .
12 See, for example, [28], Theorem 11.9.
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Let now a ∈ A satisfy condition (2). If a 6∈ Gt
l(A), then

a 6∈ Gl(A) (because Gl(A) ⊂ Gt
l(A)) and Aa is a left

ideal in A. Let I denote the closure of Aa in A. Then
I 6= A (because a 6∈ Gt

l(A)). Hence, I ∈ il(A) and a ∈ I.
By assumption it is not possible. Hence, a ∈ Gt

l(A).
The proof for closed right ideals is similar.
(b) Let A be a unital left T Q-algebra. If A is a left

Q-algebra, then every maximal left ideal in A is closed.
Vice versa, if every maximal left ideal of A is closed, then

Gl(A) = A\
⋃

M∈Ml(A)

M = A\
⋃

M∈ml(A)

M = Gt
l(A),

where Ml(A) is the set of all maximal left ideals in A and
ml(A) is the subset of closed ideals in Ml(A). Hence A is
a left Q-algebra.

The proof for right T Q algebra is similar. ¤

Proposition 4. Let A be a unital semitopological Haus-
dorff algebra and B a unital dense subalgebra of A with
the same unit element. Then

Gt
l(B) = Gt

l(A)∩B (respectively Gt
r(B) = Gt

r(A)∩B).

Proof. It is clear that Gt
l(B) ⊂ Gt

l(A) ∩ B. To prove
the opposite inclusion, let OB be a neighbourhood of
zero in B and let b ∈ Gt

l(A) ∩ B. Then there are a
neighhbourhood OA of zero in A such that OB = OA∩B
and a neighbourhood UA of zero in A such that
UAb+UA ⊂ OA. Moreover, there is a net (aλ )λ∈Λ in A
such that (aλ b)λ∈Λ converges in A to eA. Therefore, there
is an index λ0 ∈ Λ such that aλ b− eA ∈ UA whenever
λ Â λ0. Fix now an index λ1 ∈ Λ such that λ1 Â λ0.
Then aλ1b− eA ∈UA. Since B is dense in A, then there
exists a net (bα)α∈A in B which converges in A to aλ1 .
Hence, there is an index α0 ∈A such that bα −aλ1 ∈UA
whenever α Â α0. Taking this into account,

bα b− eA = (bα −aλ1)b+(aλ1b− eA) ∈UAb+UA ⊂ OA

whenever α Â α0. Hence, (bα b)α∈A converges to eA in
B. It means that b ∈ Gt

l(B).
The proof for right topological invertible elements is

similar. ¤

Corollary 5. Let A be a unital left T Q-algebra (right
T Q-algebra and T Q-algebra) and B a dense subalgebra
of A with the same unit element, then B is a left
T Q-algebra (respectively, right T Q-algebra and
T Q-algebra).

Proposition 5. Let A be a unital left T Q-algebra (right
T Q-algebra and T Q-algebra) and I a closed two-sided
ideal in A, then the quotient algebra A/I is a left
T Q-algebra (right T Q-algebra and T Q-algebra).

Proof. Let a ∈ Gt
l(A). Then there is a net (aλ )λ∈Λ in A

such that (aλ a)λ∈Λ converges in A to eA. Let π : A→ A/I
be the canonical map and τπ the quotient topology on
A/I defined by π . Since π is a continuous map, then
(π(aλ )π(a))λ∈Λ converges in A/I to eA/I = π(eA). It
means that π(Gt

l(A))⊂ Gt
l(A/I). Since Gt

l(A) is open in
A, eA ∈ Gt

l(A), and π is an open map, then π(Gt
l(A)) is a

neighbourhood of eA/I in A/I. Hence the interior part of
Gt

l(A/I) is not empty. Therefore A/I (in the topology τπ )
is a left T Q-algebra by Theorem 1.

The proof for right topological invertible elements is
similar. ¤

4. TOPOLOGICAL IDEALS

Let A be a unital semitopological algebra. We introduce
the concept of a topological ideal and use it to
characterize commutative complete metrizable unital
T Q-algebras.

We say that a left (right) ideal I in A is a topological
left (respectively, right) ideal if I does not contain left
(respectively, right) topologically invertible elements.
We call a topological ideal an ideal which is a left
topological ideal and a right topological ideal. Moreover,
we call such ideal maximal if these are not contained in
a larger topological ideal.

Proposition 6. Every topological ideal in a semitopo-
logical unital algebra is contained in a maximal topo-
logical ideal.

Proof. If (Iα) is a chain of left topological ideals (i.e.
for two indices α 6= β we have either Iα ⊂ Iβ or Iβ ⊂
Iα ), then

⋃
Iα is also a left topological ideal and the

conclusion follows from the Kuratowski–Zorn lemma.
The proofs for right and two-sided ideals are similar.

¤
Proposition 7. All left (right) ideals in a unital semi-
topological algebra are topological if and only if
Gt

l(A) = Gl(A) (respectively, Gt
r(A) = Gr(A)).

Proof. Let a ∈ Gt
l(A). If all left ideals in A are topo-

logical, then none of the left ideals of A can contain
a. Hence, a ∈ Gl(A). Therefore Gt

l(A) = Gl(A). Con-
versely, if Gt

l(A) = Gl(A), then every left ideal of A is
topological.

The proof for right ideals is similar. ¤
Atzmon in [13] constructed a complete locally

convex commutative unital algebra in which all non-zero
elements are topologically invertible and which is not a
field. In this example the only maximal topological ideal
is the zero ideal, while there are many dense maximal
non-topological ideals.

Proposition 8. Let A be a unital semitopological
algebra, and M a closed maximal topological ideal13 in
A. Then all non-zero elements in the quotient algebra
A/M are topologically invertible.

13 Here and later on an ideal means a two-sided ideal.
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Proof. If J′ is a closed topological ideal in A/M, then
its inverse image J under the quotient map is a (proper)
closed ideal in A, and so it is a topological ideal. Since
M ⊂ J, we have J = M, or J′ is a zero ideal in A/M.
Thus all non-zero ideals in A/M are dense and so all
non-zero elements in A/M are topologically invertible.
The conclusion follows. ¤

Proposition 9. Let A be a unital left (right) T Q-algebra.
Then all maximal topological left (respectively, right)
ideals of A are closed.

Proof. Let M be a maximal topological left ideal in A.
Then M ⊂ A \Gt

l(A). Since A is a left T Q-algebra, then
A \Gt

l(A) is a closed subset in A. Therefore clAM ⊂
A \Gt

l(A). Hence, clAM ∩Gt
l(A) = /0. It means that

clAM is a topological left ideal as well, which implies
M = clAM. Hence, all maximal topological left ideals in
A are closed.

The proof for right ideals is similar. ¤
We shall prove now a topological version of the

following result given in [7].

Theorem A. Let A be a commutative complete metriz-
able unital algebra. Then A has all maximal ideals
closed if and only if it is a Q-algebra.

Our result reads as follows.

Proposition 10. Let A be a commutative complete
metrizable unital algebra. Then A has all maximal
topological ideals closed if and only if it is a T Q-algebra.

Proof. If A is a T Q-algebra, then all maximal topological
ideals are closed in A by Proposition 9. If now A is not a
T Q-algebra, then, by Theorem 1, we can find a sequence
(xi) of elements of A which tends to eA and consists
of elements which are not topologically invertible. By
Lemma 2 in [33], we can find a subsequence (ai) ⊂ (xi)
such that all products us = asas+1 . . . ,s = 1,2, . . . are
convergent and

lim
s

us = eA. (3)

Put Is = usA. Since a product xy is in Gt(A) if and only
if both x and y are in G(t)(A) (see [6], Lemma 3), all
Is are topological ideals in A and consequently I =

⋃
Is

is also such an ideal. Since for every x in A and every
natural s the element usx is in I, relation (3) implies that
I is dense in A. By Proposition 6, A has a dense maximal
topological ideal and the conclusion follows. ¤
Remark 1. The result of Proposition 10 can be void
(equal to the Theorem A) since we know no example of
a T Q-algebra of type F that is not a Q-algebra. However,
in [35] it is conjectured that the algebra constructed
in [30] and similar algebras (called Williamson type
algebras), which are B0-algebras, have all non-zero
elements topologically invertible, and so they are
T Q-algebras of type F . Thus there is some hope that
the result will be non-void.

Remark 2. Some results of the present paper have been
recently independently obtained by also other authors
(see [18], [22], and [26]).

5. OPEN PROBLEMS

We have several open problems connected with
T Q-algebras.

Problem 1. Does there exist a proper T Q-algebra of
type F?

Problem 2. Does there exist an infinite dimensional
F-algebra with all non-zero elements topologically
invertible?

Problem 3. Does there exist a semitopological (or a
topological) algebra with Gt(A) 6= Gt(A)?

Problem 4. Is the complexification of a real unital
left (right) T Q-algebra a left (respectively, right)
T Q-algebra?
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T Q-algebrate omadusi

Mati Abel ja Wiesław Żelazko

On vaadeldud ühe- ja kahepoolsete T Q-algebrate ning ühe- ja kahepoolsete topoloogiliste ideaalide põhiomadusi. On
esitatud näiteid T Q-algebratest ja sõnastatud mõned senini lahendamata probleemid.


