ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
On determinability of idempotent medial commutative quasigroups by their endomorphism semigroups; pp. 81–87
PDF | doi: 10.3176/proc.2011.2.02

Authors
Alar Leibak, Peeter Puusemp
Abstract
We extend the result of P. Puusemp (Idempotents of the endomorphism semigroups of groups. Acta Comment. Univ. Tartuensis, 1975, 366, 76–104) about determinability of finite Abelian groups by their endomorphism semigroups to finite idempotent medial commutative quasigroups.
References

1. Alperin, J. L. Groups with finitely many automorphisms. Pacific J. Math., 1962, 12(1), 1–5.

2. Belousov, V. D. Foundations of the Theory of Quasigroups and Loops. Nauka, Moscow, 1967 (in Russian).

3. Havel, V. and Sedlářová, M. Golden section quasigroups as special idempotent medial quasigroups. Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math., 1994, 33, 43–50.

4. Krylov, P. A., Mikhalev, A. V., and Tuganbaev, A. A. Endomorphism Rings of Abelian Groups. Kluwer Academic Publisher, Dordrecht–Boston–London, 2003.

5. Murdoch, D. C. Structure of Abelian quasi-groups. Trans. Amer. Math. Soc., 1941, 49, 392–409.
doi:10.1090/S0002-9947-1941-0003427-2

6. Puusemp, P. Idempotents of the endomorphism semigroups of groups. Acta Comment. Univ. Tartuensis, 1975, 366, 76–104 (in Russian).

7. Shcherbacov, V. A. On the structure of finite medial semigroups. Bul. Acad. Sti. Rep. Moldova, Matematica, 2005, 47(1), 11–18.

8. Tabarov, A. Kh. Homomorphisms and endomorphisms of linear and alinear quasigroups. Discrete Math. Appl., 2007, 17(3), 253–260.
doi:10.1515/dma.2007.021
Back to Issue