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Abstract. We extend the result of P. Puusemp (Idempotents of the endomorphism semigroups of groups. Acta Comment.
Univ. Tartuensis, 1975, 366, 76–104) about determinability of finite Abelian groups by their endomorphism semigroups to finite
idempotent medial commutative quasigroups.
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1. INTRODUCTION

In this paper we study the endomorphism semigroups of idempotent medial commutative quasigroups
(IMC-quasigroups, for short). K. Toyoda established a connection between medial quasigroups and Abelian
groups (Theorem 2.10 in [2]). Endomorphism rings of Abelian groups have been studied by several
authors and the obtained results are presented in [4]. In [6] Puusemp proved that if G and G′ are finite
Abelian groups, then the isomorphism G∼= G′ follows from the isomorphism between their endomorphism
semigroups EndG∼= EndG′ (more precisely, it was proved that if G is a group such that its endomorphism
semigroup is isomorphic to the endomorphism semigroup of a finite Abelian group, then the groups G
and G′ are isomorphic). Motivated by Toyoda’s result (Theorem 2.10 in [2]) and Puusemp’s result, we
study endomorphisms of magmas (groupoids) which are “very close” to Abelian groups. To be more
precise, we replace the associativity by a weaker assumption – mediality. It is known that every Abelian
group G has the zero-endomorphism corresponding to the maximal congruence G×G. There exist medial
quasigroups with no proper subquasigroups, such that all their endomorphisms are invertible. Motivated
by results of endomorphism semigroups of groups, we restrict ourselves to the medial quasigroups with
zero-endomorphisms. For this purpose we consider idempotent quasigroups.

As a result we generalize Puusemp’s result to finite IMC-quasigroups, that is, if the endomorphism
semigroups of finite IMC-quasigroups Q and Q′ are isomorphic, then the quasigroups Q and Q′ are iso-
morphic too.

Idempotent medial commutative quasigroups arise in several examples of mid-point quasigroups. Let
R and R+ denote the set of real numbers and the set of positive reals, respectively. Define two binary
operations x¢ y = (x+ y)/2 and x¯ y =

√
xy. Then both (R,¢) and (R+,¯) are IMC-quasigroups.
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The paper is organized as follows. In Section 2 we present the necessary definitions and propositions
needed for the main theorem. These results are elementary and can be found also in [3,5]. For the
convenience of the reader, we recall them together with the proofs.

The connection between the given ICM-quasigroup and associated commutative Moufang loops will be
studied in Section 3. The main theorem will be given and proved in Section 4.

2. CONNECTION BETWEEN IMC-QUASIGROUPS AND ABELIAN GROUPS

Let us start by recalling the classical definition of the quasigroup.

Definition 1. A magma 〈Q, ·〉 is called a quasigroup if each of the equations ax = b and ya = b has a unique
solution for any a,b ∈ Q.

The solutions of these equations will be denoted by x = a\b and y = b/a, respectively. We also need the
following definition of quasigroups.

Definition 2. A set Q with three binary operations ·, \,/ is called a quasigroup if the following identities
hold:

x\(x · y) = x · (x\y) = y,
(y · x)/x = (y/x) · x = y.

Definitions 1 and 2 are equivalent (see [2]). Next it is assumed that Q is a quasigroup 〈Q, ·,\,/〉.
It follows from the definitions that the mappings La,Rb : Q→Q, defined by La(x) = ax, Rb(x) = xb, are

bijective. Hence, to each quasigroup Q one can associate the subgroup M(Q) = 〈{La,Rb | a,b ∈ Q},◦〉 of
the group of all bijections Q→ Q. The group M(Q) is called a multiplication group or an associated group
of the quasigroup Q.

The mapping ϕ : Q → Q is called an endomorphism of Q if ϕ preserves the binary operation ·, that is
ϕ(x · y) = ϕ(x) ·ϕ(y) for all x,y ∈ Q. An invertible endomorphism of Q is called an automorphism of Q.
The set of all endomorphisms (automorphisms) of Q will be denoted by End Q (resp. Aut Q). By abuse
of notation, we let End Q stand for the endomorphism monoid of Q. Immediate computations show that if
ϕ ∈ End Q, then ϕ preserves also the binary operations \ and /.

Definition 3. A quasigroup Q is called medial (commutative) if it satisfies the identity (x · y) · (u · v) =
(x ·u) · (y · v) (resp. x · y = y · x).

Similarly to Abelian groups, all endomorphisms of a medial quasigroup Q are summable, i.e. if ϕ,ψ
are endomorphisms of a medial quasigroup Q, then ϕ + ψ defined by (ϕ + ψ)(x) = ϕ(x) ·ψ(x) is an
endomorphism too.

Theorem 1 (Toyoda’s theorem (Theorem 2.10 in [2])). If Q is a medial quasigroup, then there exist an
Abelian group 〈Q,+,−,0〉, its commuting automorphisms φ and ψ , and an element c ∈ Q such that

x · y = φ(x)+ψ(y)+ c. (1)

The Abelian group 〈Q,+,−,0〉 is called an underlying Abelian group of the medial quasigroup Q.

Definition 4. A quasigroup Q is called idempotent if in Q the identity x · x = x is fulfilled.

Proposition 1. If Q is an idempotent medial quasigroup, then
1. Q is a distributive quasigroup, that is, Q satisfies both x ·(y ·z) = (x ·y) ·(x ·z) and (y ·z) ·x = (y ·x) ·(z ·x);
2. M(Q) is a subgroup of Aut Q.
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The proof is straightforward.
If e ∈ Q is an idempotent, then 〈{e}, ·〉 is a subquasigroup in Q. From now on, we write πe for the

endomorphism Q→{e}. Clearly, πe is a left-zero in End Q, i.e. πe ◦ϕ = πe for each ϕ ∈ End Q.

Proposition 2. If Q is an idempotent quasigroup, then ϕ is a left-zero in End Q iff ϕ = πe for some e ∈ Q.

Proof. If ϕ ∈ End Q, then obviously πe ◦ϕ = πe for each e ∈ Q.
Conversely, suppose that an endomorphism θ is left-zero in End Q. For each e,x ∈ Q we have

θ(x) = (θ ◦πe)(x) = θ(e) = πθ(e)(x).

Hence, θ = π f , where f = θ(e).

Proposition 3. Suppose that 〈Q, ·〉 is a medial quasigroup, where · is in the form (1). Then the following
hold:
1. Q is commutative iff φ = ψ;
2. Q is idempotent iff c = 0 and φ +ψ = 1Q.

See also Theorem 4 in [7].
Let 2 denote the endomorphism x 7→ x+ x of an Abelian group 〈Q,+,−,0〉.

Proposition 4. A quasigroup Q is an IMC-quasigroup iff there exists an Abelian group 〈Q,+,−,0〉 such
that the mapping 2 is its automorphism and x · y = 2−1(x+ y).

Proof. Suppose that 〈Q, ·〉 is an IMC-quasigroup. It follows from Toyoda’s theorem that x · y = φ(x) +
ψ(y)+ c, where φ and ψ are automorphisms of 〈Q,+,−,0〉. Since 〈Q, ·〉 is commutative and idempotent,
Proposition 3 shows that φ = ψ , c = 0, and 1Q = φ + φ = 2 ◦ φ . As φ is an automorphism, we have that
2−1 = φ and finally that x · y = 2−1(x+ y).

Conversely, if x ·y = 2−1(x+y), then it is staightforward to check that 〈Q, ·〉 is an IMC-quasigroup.

One should note that any IMC-quasigroup is uniquely determined by its underlying Abelian group. Next
we assume that everywhere 〈Q,+〉 is an underlying Abelian group of the given IMC-quasigroup 〈Q, ·〉.
Corollary 1. If the Abelian group 〈Q,+,−,0〉 is finite, then 2 is an automorphism iff 〈Q,+,−,0〉 is of odd
order.

The next corollary is a special case of Proposition 3 in [8].

Corollary 2. If Q is an IMC-quasigroup, then End(Q,+) ↪→ End(Q, ·) (embedding of monoids).

Indeed, if η is an endomorphism of the Abelian group 〈Q,+,−,0〉, then 2◦η = η ◦2, 2−1◦η = η ◦2−1

and for each x,y ∈ Q we have

η(x) ·η(y) = 2−1(η(x)+η(y)) = 2−1(η(x))+2−1(η(y))

= η(2−1(x+ y)) = η(x · y),
i.e. η ∈ End(Q, ·).
Corollary 3. If Q is an IMC-quasigroup, then x\y = y/x = 2(y)− x.

Indeed, since y = (y/x) ·x, we have y = 2−1(y/x+x), i.e. y/x = 2(y)−x. In a commutative quasigroup
always y/x = x\y. So we have x\y = 2(y)− x.

Definition 5. Two quasigroups 〈Q, ·〉 and 〈Q′,∗〉 are called isomorphic, if there exist the bijective mapping
τ : Q→ Q′, such that τ(x · y) = τ(x)∗ τ(y) for each x,y ∈ Q.
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3. CONNECTION BETWEEN IMC-QUASIGROUPS AND COMMUTATIVE MOUFANG
LOOPS

It was shown in Proposition 1 that any idempotent medial quasigroup is distributive. Therefore, any
IMC-quasigroup is also a distributive quasigroup. Distributive quasigroups are connected to commutative
Moufang loops (see [2] for more details).

Definition 6. A quasigroup 〈Q, ·〉 is called a loop if there exists e ∈ Q such that e · x = x = x · e for each
x ∈ Q.

We denote it by 〈Q, ·,e〉.
Definition 7. A loop 〈Q, ·,e〉 is called a commutative Moufang loop if it satisfies the identity

(x · x) · (y · z) = (x · y) · (x · z). (2)

From Definition 7 it follows that the binary operation · is commutative and there exists the
mapping −1 : Q→ Q such that x−1 · (x · y) = y holds.

Let 〈Q, ·〉 be an IMC-quasigroup and k ∈ Q. Let us define a new binary operation on Q as follows:

x⊕k y = R−1
k x ·L−1

k y. (3)

The magma 〈Q,⊕k〉 is a commutative Moufang loop with the identity element k by Theorem 8.1 in [2]. Due
to commutativity of 〈Q, ·〉, we have that

x⊕k y = L−1
k x ·L−1

k y = L−1
k (x · y).

Moreover, the unary operation −1 of 〈Q,⊕k〉 will be denoted byªk and the elementªkx coincides with k/x.

Proposition 5. The commutative Moufang loop 〈Q,⊕k,ªk,k〉 is an Abelian group.

Proof (see also Theorem 9 in [5]). It is sufficient to prove only the associativity of ⊕k. Let x,y,z ∈ Q. Then

x⊕k (y⊕k z) = (x⊕k k)⊕k (y⊕k z) = L−1
k ((x⊕k k) · (y⊕k z))

= L−1
k

(
L−1

k (x · k) ·L−1
k (y · z)) = L−1

k

(
L−1

k ((x · k) · (y · z)))

= L−1
k

(
L−1

k ((x · y) · (k · z))) = L−1
k

(
L−1

k (x · y) ·L−1
k (k · z))

= L−1
k ((x⊕k y) · (k⊕k z)) = (x⊕k y)⊕k (k⊕k z)

= (x⊕k y)⊕k z. 2

Corollary 4. If 〈Q, ·〉 is an IMC-quasigroup with the underlying Abelian group 〈Q,+,−,0〉, that is
x · y = 2−1(x+ y), then x⊕k y = x+ y− k.

Proof. Let x,y ∈ Q. Then

x⊕k y = L−1
k (x · y) = k\(x · y) = 2(x · y)− k = 2

(
2−1(x+ y)

)− k
= x+ y− k. 2

As a particular case we have

Corollary 5. Let the assumptions be as in Corollary 4. Then x⊕0 y = x+ y.
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By the last corollary we have

x+ y = x⊕0 y = L−1
0 (x · y) = L−1

0 (2−1(x+ y)).

Therefore, 2= L−1
0 , i.e. L−1

0 is an automorphism of the underlying Abelian group. We have a more general
result.

Corollary 6. Let 2k, with 2k(x) = x⊕k x, be an automorphism of the Abelian group 〈Q,⊕k,ªk,k〉. Then
2k = L−1

k .

Obviously,
2k(x) = x⊕k x = L−1

k (x · x) = L−1
k (x).

Proposition 6. For each k, l ∈ Q the Abelian groups 〈Q,⊕k,ªk,k〉 and 〈Q,⊕l,ªl, l〉 are isomorphic.

Proof (see also Theorem 10 in [5]). For each k ∈ Q, the mapping ψk : Q→ Q, given by ψk(x) = x+ k, is an
isomorphism from 〈Q,+,−,0〉 to 〈Q,⊕k,ªk,k〉. Now the proposition follows immediately. 2

We will write 0Q for the set of all left-zero endomorphisms of an ICM-quasigroup Q. By Proposition 2,

0Q = {πk : Q→{k} | k ∈ Q}.

Let k ∈ Q. The set of all submonoids M of End(Q, ·) such that 1Q,πk ∈M and M∩0Q = {πk} is non-empty
and, by Zorn’s lemma, has a maximal element. From now on, Mk denotes a maximal submonoid in End(Q, ·)
such that Mk∩0Q = {πk}.

Proposition 7. The submonoid Mk coincides with the endomorphism monoid of the Abelian group
〈Q,⊕k,ªk,k〉.
Proof. The proof is divided into three steps:
1. ϕ(k) = k for each ϕ ∈Mk;
2. ϕ(x⊕k y) = ϕ(x)⊕k ϕ(y) for each ϕ ∈Mk and for each x,y ∈ Q;
3. the endomorphism monoid End(Q,⊕k) of the Abelian group 〈Q,⊕k,ªk,k〉 coincides with Mk.

It follows from the first two steps that Mk ⊆ End(Q,⊕k).

1. Let ϕ ∈Mk. By definition, πk ∈Mk. Therefore ϕ ◦πk ∈Mk. For each x ∈Q we have (ϕ ◦πk)(x) = ϕ(k)
i.e. ϕ ◦πk = πϕ(k). By the definition of Mk we conclude that πk = πϕ(k) and hence k = ϕ(k).

2. Let ϕ ∈Mk and let x,y ∈ Q. Then

ϕ(x⊕k y) = ϕ(L−1
k (x · y)) = ϕ(k\(x · y)) = ϕ(k)\(ϕ(x) ·ϕ(y))

= L−1
ϕ(k)(ϕ(x) ·ϕ(y)) = L−1

k (ϕ(x) ·ϕ(y))

= ϕ(x)⊕k ϕ(y).

3. By Corollary 6, 2k = L−1
k . Hence, for each ξ ∈ End(Q,⊕k) we have 2k ◦ξ = ξ ◦2k, L−1

k ◦ξ = ξ ◦L−1
k ,

ξ ◦Lk = Lk ◦ξ and, in view of x⊕k y = L−1
k (x · y), it follows that

ξ (x · y) = ξ (Lk(x⊕k y)) = Lk(ξ (x)⊕k ξ (y)) = ξ (x) ·ξ (y),

i.e. ξ ∈ End(Q, ·). Therefore, Mk ⊆ End(Q,⊕k)⊆ End(Q, ·). On the other hand, it is easy to check that
End(Q,⊕k)∩0Q = {πk} by the definition of Mk, it follows that End(Q,⊕k) = Mk.
The proposition is proved.

Corollary 7. Let ϕ ∈ End(Q, ·). Then ϕ ∈Mk ⇔ ϕ(k) = k.
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Proof. Let
M′ = {ϕ ∈ End(Q, ·) | ϕ(k) = k}.

Obviously 1Q ∈M′ and ϕ ◦ψ ∈M′ whenever ϕ ,ψ ∈M′. Hence, M′ is a monoid and πk ∈M′ by the definition
of πk. The first part of the proof of Proposition 7 implies Mk ⊆M′. Clearly, M′ is a submonoid of End(Q, ·)
such that M′∩0Q = {πk}. By the definition of Mk we have M′ = Mk.

Corollary 8. If End(Q, ·) is finite, then (Q, ·) is also finite.

We give two proofs for this corollary. The first one is more elementary. The second proof uses results
of the group theory and the analogue of its corollary for groups.

Elementary proof. If End(Q, ·) is finite, then 0Q is finite too. Hence the IMC-quasigroup Q is finite due to
the one-to-one correspondence between 0Q and Q, i.e. k ↔ πk. 2

Group-theoretic proof. Let End(Q, ·) be finite. Since End(Q,+) ⊆ End(Q, ·), the monoid End(Q,+) is
finite, too. It is well known that if the endomorphism monoid of a group G is finite, then the group G is
finite by Theorem 2 in [1]. Therefore, the group (Q,+) is finite and so is the IMC-quasigroup (Q, ·). 2

4. MAIN THEOREM

Theorem 2. Let 〈Q, ·〉 and 〈Q′,∗〉 be IMC-quasigroups and 〈Q, ·〉 be finite. If the endomorphism monoids
End(Q, ·) and End(Q′,∗) are isomorphic, then the quasigroups Q and Q′ are isomorphic.

Proof. By Corollary 8, Q′ is finite, too. Let x,y ∈ Q and x′,y′ ∈ Q′. By Proposition 4 we have

x · y = 2−1(x+ y) and x′ ∗ y′ = 2′−1(x′+′ y′),

where 〈Q,+〉 and 〈Q′,+′〉 are the underlying Abelian groups of Q and Q′, respectively. By Corollary 2, the
monoids End(Q,+) and End(Q′,+′) are contained in the monoids End(Q, ·) and End(Q′,∗), respectively.

Let M 6 End(Q, ·) be the maximal submonoid, such that M ∩ 0Q = {πk} for some k ∈ Q. By
Propositions 6 and 7 and Corollary 5 we have an isomorphism M ∼= End(Q,+). Let Γ : End(Q, ·) →
End(Q′,∗) be an isomorphism of monoids. Hence, the image of the restriction of Γ to End(Q,+) is the
maximal submonoid M′ 6 End(Q′,∗) such that M′ ∩ 0Q′

= {πk′} for some k′ ∈ Q′. From Propositions 6
and 7 we conclude that M′ ∼= End(Q′,+′) and finally that End(Q,+)∼= End(Q′,+′).

Since 〈Q,+〉 and 〈Q′,+′〉 are finite Abelian groups, their isomorphism follows from End(Q,+) ∼=
End(Q′,+′) (see Theorem 4.2 in [6]). Let ξ : Q → Q′ be the corresponding isomorphism. Clearly,
2′ ◦ ξ = ξ ◦ 2 and 2′−1 ◦ ξ = ξ ◦ 2−1. We finish the proof by showing that ξ is also an isomorphism
between the quasigroups Q and Q′. Let x,y ∈ Q. Then

ξ (x)∗ξ (y) = 2′−1(ξ (x)+′ ξ (y)) = 2′−1(ξ (x))+′ 2′−1(ξ (y))

= ξ (2−1(x))+′ ξ (2−1(y)) = ξ (2−1(x)+2−1(y))

= ξ (2−1(x+ y))

= ξ (x · y). 2

Corollary 9. Let endomorphism monoids of two IMC-quasigroups Q and Q′ be isomorphic. If Q is finite,
then the underlying Abelian groups of Q and Q′ are isomorphic.
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Idempotentsete mediaalsete kommutatiivsete kvaasirühmade määratavusest oma
endomorfismipoolrühmadega

Alar Leibak ja Peeter Puusemp

On uuritud lõplike kommutatiivsete idempotentsete mediaalsete kvaasirühmade määratavust oma endo-
morfismipoolrühmaga. Lähtudes Toyoda teoreemist, mis seob omavahel mediaalsed kvaasirühmad ja Abeli
rühmad, ning lõplike Abeli rühmade määratavusest oma endomorfismipoolrühmaga [6], on mainitud tule-
must laiendatud lõplikele kommutatiivsetele idempotentsetele mediaalsetele kvaasirühmadele. On näidatud,
et ka selliste kvaasirühmade jaoks saab laiendada rühmateooriast tuntud tulemust, et rühma G endomorfismi-
poolrühma lõplikkusest järeldub rühma lõplikkus (järeldus 8).


