ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Retraction: Tangent structures and analytical mechanics; pp. 98–103
PDF | doi: 10.3176/proc.2011.2.04

Author
Maido Rahula
Abstract
We establish a link between the sector-forms of White and the exterior forms of Cartan. We show that the Hamiltonian system on T2M reduces to Lagrange's equations on the osculating bundle OscM. The structures TkM and Osck–1M are presented explicitly.
References

  1. Atanasiu, G., Balan, V., Brînzei, N., and Rahula, M. Differential Geometric Structures: Tangent Bundles, Connections in Bundles, Exponential Law in the Jet Space. Librokom, Moscow, 2010 (in Russian).

  2. Atanasiu, G., Balan, V., Brînzei, N., and Rahula, M. Second Order Differential Geometry and Applications: Miron-Atanasiu Theory. Librokom, Moscow, 2010 (in Russian).

  3. Bertram, W. Differential Geometry, Lie Groups and Symmetric Spaces over General Base Fields and Rings. Memoirs of the AMS, No. 900, 2008 (Zbl pre5250766).

  4. Godbillon, C. Géométrie Différentielle et Mécanique Analytique. Hermann, Paris, 1969 (Zbl 1074.24602).

  5. Ehresmann, Ch. Catégories doubles et catégories structurées. C. R. Acad. Sci. (Paris), 1958, 256, 1198–1201.

  6. Kushner, A., Lychagin, V., and Rubtsov, V. Contact Geometry and Nonlinear Differential Equations. Ser. Encyclopedia of Mathematics and its Applications, No. 101, Cambridge UP, 2007.

  7. Marsden, J. E. and Ratin, T. S. Introduction to Mechanics and Symmetry. Springer-Verlag, 1994.

  8. Pradines, J. Suites exactes vectorielles doubles et connexions. C. R. Acad. Sci. (Paris), 1974, 278, 1587–1590.

  9. Rahula, M. New Problems in Differential Geometry. WSP, 1993 (Zbl 0795.53002).

10. Vagner, V. V. Theory of differential objects and foundations of differential geometry. Appendix in: Veblen, O. and Whitehead, J. H. C. The Foundations of Differential Geometry. IL, Moscow, 1949, 135–223 (in Russian).

11. White, E. J. The Method of Iterated Tangents with Applications in Local Riemannian Geometry. Monographs and Studies in Mathematics, 13. Pitman (Advanced Publishing Program), Boston, Mass.–London, 1982.
Back to Issue