ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Convergence of the p-Bieberbach polynomials in regions with zero angles; pp. 104–114
PDF | doi: 10.3176/proc.2011.2.05

Authors
Cem Koşar, Mehmet Küçükaslan, Fahreddin G. Abdullayev
Abstract
Uniform convergence of the p-Bieberbach polynomials is proved in the case of a simply connected region bounded by a piecewise quasiconformal curve with certain interior zero angles on the corner where two arcs meet.
References

  1. Abdullayev, F. G. Uniform convergence of generalized Bieberbach polynomials in regions with non-zero angles. Acta Math. Hung., 1997, 77, 223–246.
doi:10.1023/A:1006590814228

  2. Abdullayev, F. G. Uniform convergence of the Bieberbach polynomials inside and on the closure of domain in the complex plane. East Journal on Approximations, 2001, 7(1), 77–101.

  3. Abdullayev, F. G. Uniform convergence of generalized Bieberbach polynomials in regions with zero angles. Czech. Math. J., 2001, 51(126), 643–660.
doi:10.1023/A:1013796308878

  4. Abdullayev, F. G. and Baki, A. On the convergence of Bieberbach polynomials in domains with interior zero angles. Complex Variables: Theory and Applications, 2001, 34(2), 131–143.

  5. Ahlfors, L. V. Lectures on Quasiconformal Mappings. Van Nostrand, Princeton, NJ, 1996.

  6. Andrievskii, V. V. On the uniform convergence of Bieberbach polynomials in domains with piecewise quasiconformal boundary. In Mappings Theory and Approximation of Function. Naukova Dumka, Kiev, 1983, 3–18.

  7. Andrievskii, V. V. Convergence of Bieberbach polynomials in domains with quasiconformal boundary. Ukrainian Math. J., 1983, 35, 233–236.
doi:10.1007/BF01092167

  8. Andrievskii, V. V., Belyi, V. I., and Dzjadyk, V. K. Conformal Invariants in Constructive Theory of Functions of Complex Variable. World Federation Pub., Atlanta, Georgia, 1995.

  9. Belyi, V. I. and Pritsker, I. E. On the curved wedge condition and the continuity moduli of conformal mapping. Ukrainian Math. J., 1993, 45, 763–769.
doi:10.1007/BF01061436

10. Davis, P. J. Interpolation and Approximation. Blaisdell Publ. Company, 1963.

11. Gaier, D. On the convergence of the Bieberbach polynomials in regions with corners. Const. Approx., 1998, 4, 289–305.
doi:10.1007/BF02075463

12. Israfilov, D. Uniform convergence of the Bieberbach polynomials in closed smooth domains of bounded boundary rotation. J. Approx. Theory, 2003, 125, 116–130.
doi:10.1016/j.jat.2003.09.008

13. Keldysh, M. V. Sur I’approximation en moyenne quadratique des fontions analtiques. Math. Sb., 1939, 5, 391–400.

14. Kucukaslan, M. and Abdullayev, F. G. New extremal polynomials and its approximations properties. Novi Sad J. Math., 2009, 39(2), 21–34.

15. Lehto, O. and Virtanen, K. I. Quasiconformal Mapping in the Plane. Springer Verlag, Berlin, 1973.

16. Mergelyan, S. N. Certain questions of the constructive theory of functions. Trudy Math. Inst. Steklov, 1951, 37 (in Russian).

17. Pomerenke, Ch. Univalent Functions. Göttingen, 1975.

18. Simonenko, I. B. On the convergence of Bieberbach polynomials in the case of Lipschitz domain. Math. USSR-IZV., 1979, 13, 166–174.
doi:10.1070/IM1979v013n01ABEH002017

19. Smirnov, V. I. and Lebedev, N. A. Functions of a Complex Variable: Constructive Theory. MIT Press, 1968.

20. Suetin, P. K. Polynomials Orthogonal over a Region and Bieberbach Polynomial. AMS, 1974.

21. Walsh, J. L. Interpolation and Approximation by Rational Functions in the Complex Domain. AMS, 1960.
Back to Issue