ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Static state feedback linearizability: relationship between two methods; pp. 121–135
PDF | doi: 10.3176/proc.2011.2.07

Authors
Tanel Mullari, Ülle Kotta ORCID Icon, Maris Tõnso
Abstract

The paper establishes the explicit relationship between two sets of necessary and sufficient conditions for static state feedback linearizability of a discrete-time nonlinear control system. A detailed algorithm is presented for finding the state coordinate transformation. Finally, the methods are compared from the point of view of computational complexity. Two examples illustrate the theoretical results.

References

  1. Jayaraman, G. and Chirek, H. J. Feedback linearization of discrete-time systems. In Proceedings of the 32nd IEEE Conference on Decision and Control. San Antonio, Texas, 1993, 2972–2977.

  2. Nam, K. Linearization of discrete-time nonlinear systems and a canonical structure. IEEE Trans. Autom. Contr., 1989, 34, 119–122.
doi:10.1109/9.8665

  3. Grizzle, J. W. Feedback linearization of discrete time systems. Lecture Notes in Control and Inform. Sci., 1986, 83, 273–281.

  4. Nijmeijer, H. and van der Schaft, A. J. Nonlinear Dynamical Control Systems. Springer Verlag, New York–Berlin–Heidelberg, 1990.

  5. Aranda-Bricaire, E., Kotta, Ü., and Moog, C. H. Linearization of discrete time systems. SIAM J. Control Optim., 1996, 34(6), 1999–1023.
doi:10.1137/S0363012994267315

  6. Jakubczyk, B. Feedback linearization of discrete-time systems. Syst. Contr. Lett., 1987, 9, 411–416.
doi:10.1016/0167-6911(87)90070-3

  7. Simões, C. and Nijmeijer, H. Nonsmooth stabilizability and feedback linearization of discrete-time nonlinear systems. Int. J. Robust Nonlinear Control, 1996, 6, 171–188.
doi:10.1002/(SICI)1099-1239(199604)6:3<171::AID-RNC140>3.0.CO;2-0

  8. Monaco, S. and Normand-Cyrot, D. Normal forms and approximated feedback linearization in discrete time. Syst. Contr. Lett., 2006, 55, 71–80.
doi:10.1016/j.sysconle.2005.04.016

  9. Grizzle, J. W. A linear algebraic framework for the analysis of discrete-time nonlinear systems. SIAM J. Control Optim., 1993, 31, 1026–1044.
doi:10.1137/0331046

10. Aranda-Bricaire, E. Computer algebra analysis of discrete-time nonlinear systems. In Proceedings of the 13th IFAC World Congress. San Francisco, USA, 1996, 306–309.

11. Günter, N. M. Integration of the First Order Partial Differential Equations. Gosudarstvennoe Tekhniko-Teoreticheskoe Izdatel¢stvo, Leningrad, Moscow, 1934 (in Russian).

12. Kotta, Ü. and Tõnso, M. Linear algebraic tools for discrete-time nonlinear control systems with Mathematica. Lecture Notes in Control and Inform. Sci., 2003, 281, 195–205.

13. Rotfuβ, R. and Zeitz, M. A toolbox for symbolic nonlinear feedback design. In Proceedings of the 13th IFAC World Congress. San Francisco, USA, 1996, 283–288.

14. deJager, B. The use of symbolic computation in nonlinear control: is it usable? IEEE Trans. Autom. Control, 1995, 40, 84–89.
doi:10.1109/9.362897


15. Tanaka, K. and Sano, M. A robust stabilization problem of fuzzy control systems and its application to backing up control of a truck trailer. IEEE Trans. Fuzzy Syst., 1994, 2(2), 119–134.doi:10.1109/91.277961

Back to Issue