ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
On pseudo-slant submanifolds of trans-Sasakian manifolds; pp. 1–11
PDF | doi: 10.3176/proc.2011.1.01

Authors
Uday Chand De, Avijit Sarkar
Abstract
The object of the present paper is to study pseudo-slant submanifolds of trans-Sasakian manifolds. Integrability conditions of the distributions on these submanifolds are worked out. Some interesting results regarding such manifolds have also been deduced. An example of a pseudo-slant submanifold of a trans-Sasakian manifold is given.
References

  1. Blair, D. E. Contact Manifolds in Riemannian Geometry. Lecture Notes Math., 509, 1976.

  2. Blair, D. E. and Oubina, J. A. Conformal and related changes of metric on the product of two almost contact metric manifolds. Pub. Matematiques, 1990, 34, 199–207.

  3. Cabrerizo, J. L., Carriazo, A., and Fernandez, M. Slant submanifolds in Sasakian manifolds. Geometry Dedicate, 1999, 78, 183–199.
doi:10.1023/A:1005241320631

  4. Cabrerizo, J. L., Carriazo, A., and Fernandez, M. Slant submanifolds in Sasakian manifolds. Glasg. Math. J., 2000, 42, 125–138.
doi:10.1017/S0017089500010156

  5. Carriazo, A. New Devolopments in Slant Submanifolds Theory. Narosa publishing House, New Delhi, India, 2002.

  6. Chen, B. Y. Geometry of Slant Submanifolds. Katholieke Universiteit Leuven, 1990.

  7. Gupta, R. S., Haider, S. M. K., and Sarfuddin, A. Slant submanifolds of a trans-Sasakian manifold. Bull. Math. Soc. Roumanie, 2004, 47, 45–57.

  8. Khan, V. A. and Khan, M. A. Pseudo-slant submanifolds of a Sasakian manifold. Indian J. Pure Appl. Math., 2007, 38, 31–42.

  9. Lotta, A. Slant submanifolds in contact geometry. Bull. Math. Soc. Roumanie, 1996, 39, 183–198.

10. Marrero, J. C. The local structure of trans-Sasakian manifolds. Ann. Math. Pure Appl., 1992, 4, 77–86.
doi:10.1007/BF01760000

11. Oubina, J. A. New classes of contact metric structures. Publ. Math. Debrecen, 1985, 32, 187–193.
Back to Issue