1. Browder, F. E. and Petryshyn, W. V. Construction of fixed points of nonlinear mappings in Hilbert space. J. Math. Anal. Appl., 1967, 20, 197–228.
doi:10.1016/0022-247X(67)90085-6
2. Blum, E. and Oettli, W. From optimization and variational inequalities to equilibrium problems. Math. Stud., 1964, 63, 123–145.
3. Combettes, P. L. and Hirstoaga, S. A. Equilibrium programming in Hilbert spaces. J. Nonlinear Convex Anal., 2005, 6, 117–136.
4. Ceng, L. C. and Yao, J. C. Hybrid viscosity approximation schemes for equilibrium problems and fixed point problems of infinitely many nonexpansive mappings. Appl. Math. Comput., 2008, 198, 729–741.
doi:10.1016/j.amc.2007.09.011
5. Colao, V., Marino, G., and Xu, H. K. An iterative method for finding common solutions of equilibrium and fixed point problems. J. Math. Anal. Appl., 2008, 344, 340–352.
doi:10.1016/j.jmaa.2008.02.041
6. Chang, S. S., Lee, H. W. J., and Chan, C. K. A new method for solving equilibrium problem fixed point problem and variational inequality problem with application to optimization. Nonlinear Anal., 2009, 70, 3307–3319.
doi:10.1016/j.na.2008.04.035
7. Cho, Y. J., Qin, X., and Kang, J. I. Convergence theorems based on hybrid methods for generalized equilibrium problems and fixed point problems. Nonlinear Anal., 2009, 71, 4203–4214.
doi:10.1016/j.na.2009.02.106
8. Moudafi, A. Weak convergence theorems for nonexpansive mappings and equilibrium problems. J. Nonlinear Convex Anal., 2008, 9, 37–43.
9. Plubtieng, S. and Punpaeng, R. A new iterative method for equilibrium problems and fixed point problems of nonexpansive mappings and monotone mappings. Appl. Math. Comput., 2008, 197, 548–558.
doi:10.1016/j.amc.2007.07.075
10. Qin, X., Cho, Y. J., and Kang, S. M. Convergence theorems of common elements for equilibrium problems and fixed point problems in Banach spaces. J. Comput. Appl. Math., 2009, 225, 20–30.
doi:10.1016/j.cam.2008.06.011
11. Qin, X., Kang, S. M., and Cho, Y. J. Convergence theorems on generalized equilibrium problems and fixed point problems with applications. Proc. Estonian Acad. Sci., 2009, 58, 170–318.
doi:10.3176/proc.2009.3.04
12. Takahashi, S. and Takahashi, T. Viscosity approximation methods for equilibrium problems and fixed point problems in Hilbert spaces. J. Math. Anal. Appl., 2007, 331, 506–515.
doi:10.1016/j.jmaa.2006.08.036
13. Takahashi, S. and Takahashi, W. Strong convergence theorem for a generalized equilibrium problem and a nonexpansive mapping in a Hilbert space. Nonlinear Anal., 2008, 69, 1025–1033.
doi:10.1016/j.na.2008.02.042
14. Marino, G. and Xu, H. K. Weak and strong convergence theorems for strict pseudo-contractions in Hilbert spaces. J. Math. Anal. Appl., 2007, 329, 336–346.
doi:10.1016/j.jmaa.2006.06.055
15. Suzuki, T. Strong convergence of Krasnoselskii and Mann’s type sequences for one-parameter nonexpansive semigroups without Bochne integrals. J. Math. Anal. Appl., 2005, 305, 227–239.
doi:10.1016/j.jmaa.2004.11.017
16. Zhou, H. Convergence theorems of fixed points for k-strict pseudo-contractions in Hilbert spaces. Nonlinear Anal., 2008, 69, 456–462.
doi:10.1016/j.na.2007.05.032
doi:10.1112/S0024610702003332