This paper deals with an important class of multialgebras, called Krasner hyperrings. Our purpose is to define the expansion of r-hyperideals and to extend this concept to φ-δ-r-hyperideal in commutative Krasner hyperrings with nonzero identity. δ-r-hyperideals of commutative Krasner hyperrings are studied. Some properties of φ-δ-r-hyperideals are investigated and several examples are provided.
1. Asokkumar, A. and Velrajan, M. Von Neumann regularity on Krasner hyperring. In Algebra, Graph Theory and Their Applica- tions (Tamizh Chelvam, T., Somasundaram, S. and Kala, R., eds). Narosa Publishing House, New Delhi, 2010.
2. Al Tahan, M. and Davvaz, B. On the existence of hyperrings associated to arithmetic functions. J. Number Theory, 2017, 174, 136–149.
https://doi.org/10.1016/j.jnt.2016.10.017
3. Al Tahan, M. and Davvaz, B. Strongly regular relations of arithmetic functions. J. Number Theory, 2018, 187, 391–402.
https://doi.org/10.1016/j.jnt.2017.11.006
4. Anderson, D. D. and Bataineh, M. Generalizations of prime ideals. Commun. Algebra, 2008, 36(2), 686–696.
https://doi.org/10.1080/00927870701724177
5. Corsini, P. Prolegomena of Hypergroup Theory. Aviani, Tricesimo, 1993.
6. Corsini, P. and Leoreanu, V. Applications of Hyperstructure Theory. (ADMA 5). Kluwer Academic Publishers, Dordrecht, 2003.
https://doi.org/10.1007/978-1-4757-3714-1
7. Darani, A. Y. Generalizations of primary ideals in commutative rings. Novi Sad J. Math., 2012, 42(1), 27–35.
8. Davvaz, B. Polygroup Theory and Related Systems. World Scientific, Hackensack, 2013.
https://doi.org/10.1142/8593
9. Davvaz, B. and Leoreanu-Fotea, V. Hyperring Theory and Applications. International Academic Press, Palm Harbor, 2007.
10. Davvaz, B. and Vougiouklis, T. A Walk Through Weak Hyperstructures: Hv-structures. WSPC, Hackensack, 2019.
https://doi.org/10.1142/11229
11. Davvaz, B. and Leoreanu-Fotea, V. Hypergroup Theory. WSPC, Hackensack, 2022.
https://doi.org/10.1142/12645
12. Davvaz, B. and Salasi, A. A realization of hyperrings. Commun. Algebra, 2006, 34(12), 4389–4400.
https://doi.org/10.1080/00927870600938316
13. Zhao, D. δ-primary ideals of commutative rings. Kyungpook Math. J., 2001, 41(1), 17–22.
14. Guan, H., Kaya, E., Bolat, M., Onar, S., Ersoy, B. A. and Hila, K. φ-δ-primary hyperideals in Krasner hyperrings. Math. Probl. Eng., 2022, 2022, 1192684.
15. Huckaba, J. A. Commutative Rings With Zero Divisors. Marcel Dekker, Inc., New York, 1988.
16. Jaber, A. Properties of φ-δ-primary and 2-absorbing δ-primary ideals of commutative rings. Asian-European J. Math., 2020, 13(1), 2050026.
https://doi.org/10.1142/S1793557120500266
17. Krasner, M. A class of hyperrings and hyperfields. Int. J. Math. Math. Sci., 1983, 6(2), 307–312.
https://doi.org/10.1155/S0161171283000265
18. Krasner, M. Approximation des corps valués complets de charactéristique p ≠ 0 par ceux de caractéristique 0. In Colloque d’algebre superieure, Bruxelles 19–22 December 1956. Center Belge de Recherches Mathematiques, 1957, 129–206.
19. Marty, F. Sur une generalization de la notion de groupe. In Proceedings of the 8th Scandinavian Congress of Mathematicians, Stockholm, Sweden, 14–18 August, 1934. Ohlssons, 45–49.
20. Massouros, C. and Massouros, G. An overview of the foundations of the hypergroup theory. Mathematics, 2021, 9(9), 1014.
https://doi.org/10.3390/math9091014
21. Massouros, C. On the theory of hyperrings and hyperfields. Algebra Log., 1985, 24, 728–742.
https://doi.org/10.1007/BF01978850
22. Mittas, J. Hypergroupes canoniques. Math. Balkanica, 1972, 2, 165–179.
23. Massouros, G. and Massouros, C. Hypercompositional algebra, computer science and geometry. Mathematics, 2020, 8(8), 1338.
https://doi.org/10.3390/math8081338
24. Mohamadian, R. r-ideals in commutative rings, Turkish J. Math., 2015, 39(5), 733–749.
https://doi.org/10.3906/mat-1503-35
25. Nakassis, A. Recent results in hyperring and hyperfield theory. Int. J. Math. Math. Sci., 1988, 11(2), 209–220.
https://doi.org/10.1155/S0161171288000250
26. Omidi, S., Davvaz, B. and Zhan, J. Some properties of n-hyperideals in commutative hyperrings, J. Algebraic Hyperstruct. Logical Algebras, 2020, 1(2), 23–30.
https://doi.org/10.29252/hatef.jahla.1.2.3
27. Ozel Ay, E. δ-primary hyperideals on commutative hyperrings, Int. J. Math. Math. Sci., 2017, 2017, 5428160.
https://doi.org/10.1155/2017/5428160
28. Stefanescu, M. 2006. Constructions of hyperfields and hyperrings. Stud. Cercet. Stiint. Ser. Mat. Univ. Bacau, 16, 563–571.
29. Ugurlu, E. A. Generalizations of r-ideals of commutative rings. J. Interdisciplinary Math., 2021, 24(8), 2283–2293.
https://doi.org/10.1080/09720502.2021.1876294
30. Vougiouklis, T. Hyperstructures and Their Representations. Hadronic Press, Palm Harbor, 1994.
31. Vougiouklis, T. The fundamental relation in hyperrings. The general hyperfield. In Proceedings of the 4th International Congress on Algebraic Hyperstructures and Applications (AHA), 1990. World Scientific, 1991, 203–211.
https://doi.org/10.1142/9789814539555
32. Xu, P., Bolat, M., Kaya, E., Onar, S., Ersoy, B. A. and Hila, K. r-hyperideals and generalizations of r-hyperideals in Krasner hyperrings. Math. Probl. Eng., 2022, 2022, 7862425.
33. Xu, P., Bolat, M., Kaya, E., Onar, S., Ersoy, B. A. and Hila, K. δ-r-hyperideals and φ-δ-r-hyperideals of commutative Krasner hyperrings. 2021.
https://arxiv.org/abs/2112.05513