Soil salinization is a global environmental problem. Arbuscular mycorrhizal (AM) fungi are capable of enhancing plant resistance to stress, for instance, improving plant tolerance to salinity stress. A pot experiment was carried out to determine the effects of AM fungi (Funneliformis mosseae, Rhizophagus intraradices, or F. mosseae and R. intraradices combined) and five different NaCl levels on the growth and physiology of Tagetes erecta under greenhouse conditions. The results showed that dual inoculation with F. mosseae and R. intraradices significantly increased total root length, root surface area, root volume, and root tip number of T. erecta plants under salt stress. Inoculation with AM fungi inhibited Na+ accumulation in leaves and promoted the absorption of N, P, K, and Ca in leaves, and thus increased ratios of K+/Na+, Ca2+/Na+, N/Na+, and P/Na+ in leaves under salt stress. Correlation analysis showed that the coefficient (0.964) between root volume and K+ in leaves was the highest, while the correlation between root surface area and Na+ content in leaves was remarkably negative (–0.95). AM fungi improved the osmotic regulation ability of plant cells, increased the activity of antioxidant enzymes, and reduced the damage of cell membranes. It is concluded that AM fungi improved salt tolerance of Tagetes erecta by changing root morphological traits, regulating uptakes of Na+ and other nutrient elements, and enhancing antioxidant enzyme activities and osmotic adjustment.
1. Abbaspour, H., Pour, F. S. N. and Abdel-Wahhab, M. A. 2021. Arbuscular mycorrhizal symbiosis regulates the physiological responses, ion distribution and relevant gene expression to trigger salt stress tolerance in pistachio. Physiol. Mol. Biol. Pla., 27, 1765–1778.
https://doi.org/10.1007/s12298-021-01043-w
2. Abbott, L. K., Robson, A. D. and DeBoer, G. 1984. The effect of phosphorus on the formation of hyphae in soil by the vesicular–arbuseular mycorrhizal fungus, Glomus fasciculatum. New Phytol., 97, 437–446.
https://doi.org/10.1111/j.1469-8137.1984.tb03609.x
3. Abid, M., Ali, S., Qi, L. K., Zahoor, R., Tian, Z., Jiang, D. et al. 2018. Physiological and biochemical changes during drought and recovery periods at tillering and jointing stages in wheat (Triticum aestivum L.). Sci. Rep., 8, 1–15.
https://doi.org/10.1038/s41598-018-21441-7
4. Acosta-Motos, J. R., Álvarez, S., Hernández, J. A. and Sánchez-Blanco M. J. 2014. Irrigation of Myrtus communis L. plants with reclaimed water: morphological and physiological responses to different levels of salinity. J. Hortic. Sci. Biotechnol., 89, 487–494.
https://doi.org/10.1080/14620316.2014.11513110
5. Adeyemi, N. O., Atayese, M. O., Sakariyawo, O. S., Azeez, J. O. and Ridwan, M. 2021. Arbuscular mycorrhizal fungi species differentially regulate plant growth, phosphorus uptake and stress tolerance of soybean in lead contaminated soil. J. Plant Nutr., 44, 1–16.
https://doi.org/10.1080/01904167.2021.1871748
6. Al-Farsi, S. M., Al-Sadi, A. M., Ullah, A. and Farooq, M. 2021. Salt tolerance in Alfalfa landraces of Omani origin: morpho-biochemical, mineral, and genetic diversity assessment. J. Soil Sci. Plant Nutr., 21, 1484–1499.
https://doi.org/10.1007/s42729-021-00455-7
7. Al-Karaki, G. N. and Williams, M. 2021. Mycorrhizal mixtures affect the growth, nutrition, and physiological responses of soybean to water deficit. Acta Physiol. Plant., 43, 75–84.
https://doi.org/10.1007/s11738-021-03250-0
8. Alves, G. S., Bertini, S., Barbosa, B. B., Pimentel, J. P. and Azevedo, L. 2021. Fungal endophytes inoculation improves soil nutrient availability, arbuscular mycorrhizal colonization and common bean growth. Rhizosphere, 18, 100330.
https://doi.org/10.1016/j.rhisph.2021.100330
9. Andrzejak, R. and Janowska, B. 2021. Yield and quality of inflorescences in the Zantedeschia albomaculata (hook.) baill. ‘Albomaculata’ after the treatment with AMF and GA3. Agronomy, 11(4), 644.
https://doi.org/10.3390/agronomy11040644
10. Asrar, A. and Elhindi, K. M. 2011. Alleviation of drought stress of marigold (Tagetes erecta) plants by using arbuscular mycorrhizal fungi. Saudi J. Biol.Sci., 18, 93–98.
https://doi.org/10.1016/j.sjbs.2010.06.007
11. Bates, L. S., Waldren, R. P. and Teare, I. D. 1973. Rapid determination of free proline for water-stress studies. Plant Soil, 39, 205–207.
https://doi.org/10.1007/BF00018060
12. Begum, N., Qin, C., Ahanger, M. A., Raza, S. and Zhang, L. X. 2019. Role of arbuscular mycorrhizal fungi in plant growth regulation: implications in abiotic stress tolerance. Front Plant Sci., 10, 1068–1083.
https://doi.org/10.3389/fpls.2019.01068
13. Biermann, B. and Linderman, R. G. 1981. Quantifying vercular-arbuscular mycorrhizas: a proposed method towards standardization. New Phytol., 87, 63–67.
https://doi.org/10.1111/j.1469-8137.1981.tb01690.x
14. Bompadre, M. J., Silvani, V. A., Bidondo, L. F., Rios de Molina, M. D. C., Colombo, R. P., Pardo, A. G. and Godeas, A. M. 2014. Arbuscular mycorrhizal fungi alleviate oxidative stress in pomegranate plants growing under different irrigation conditions. Botany, 92, 187–193.
https://doi.org/10.1139/cjb-2013-0169
15. Boutasknit, A., Basla, M., Ait-El-Mokhtar, M., Anli, M., Ben-Laouane, R., Douira, A. et al. 2020. Arbuscular mycorrhizal fungi mediate drought tolerance and recovery in two contrasting carob (Ceratonia siliqua L.) ecotypes by regulating stomatal, water relations, and (in) organic adjustments. Plants, 9, 80–99.
https://doi.org/10.3390/plants9010080
16. Bowles, T. M., Barrios-Masias, F. H., Carlisle, E. A., Cavagnaro, T. R. and Jackson, L. E. 2016. Effects of arbuscular mycorrhizae on tomato yield, nutrient uptake, water relations, and soil carbon dynamics under deficit irrigation in field conditions. Sci. Total Environ., 566–567, 1223–1234.
https://doi.org/10.1016/j.scitotenv.2016.05.178
17. Bradford, M. M. 1976. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem., 72, 248–254.
https://doi.org/10.1016/0003-2697(76)90527-3
18. Castillo, O. S., Dasgupta-Schubert, N., Alvarado, C. J., Zaragoza, E. M. and Villegas, H. J. 2011. The effect of the symbiosis between Tagetes erecta L. (marigold) and Glomus intraradices in the uptake of copper (ii) and its implications for phytoremediation. New Biotechnol., 29, 156–164.
https://doi.org/10.1016/j.nbt.2011.05.009
19. Chance, B. and Maehly, A. C. 1955. Assay of catalases and peroxidases. Meth. Enzymol., 2, 764–775.
https://doi.org/10.1016/S0076-6879(55)02300-8
20. Chandrasekaran, M., Chanratana, M., Kim, K., Seshadri, S. and Sa, T. 2019. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Front Plant Sci., 10, 457–467.
https://doi.org/10.3389/fpls.2019.00457
21. Dashtebani, F., Hajiboland, R. and Aliasgharzad, N. 2014. Characterization of salt-tolerance mechanisms in mycorrhizal (Claroideoglomus etunicatum) halophytic grass, puccinellia distans. Acta Physiol. Plant., 36, 1713–1726.
https://doi.org/10.1007/s11738-014-1546-4
22. Diao, F., Dang, Z., Xu, J., Ding, S. and Guo, W. 2021. Effect of arbuscular mycorrhizal symbiosis on ion homeostasis and salt tolerance-related gene expression in halophyte Suaeda salsa under salt treatments. Microbiol. Res., 245, 126688.
https://doi.org/10.1016/j.micres.2020.126688
23. Elhindi, K. M., Al-Mana, F. A., Salah, E., Wadei, A. A. and Elgorban, A. M. 2018. Arbuscular mycorrhizal fungi mitigates heavy metal toxicity adverse effects in sewage water contaminated soil on Tagetes erecta L. Soil Sci. Plant Nutr., 64(5), 1–7.
https://doi.org/10.1080/00380768.2018.1490631
24. Engel, R., Szabó, K., Abrankó, L., Rendes, K., Füzy, A. and Takács, T. 2016. Effect of arbuscular mycorrhizal fungi on the growth and polyphenol profile of marjoram, lemon balm, and marigold. J. Agr. Food Chem., 64, 3733–3742.
https://doi.org/10.1021/acs.jafc.6b00408
25. Eppley, R. W. and Solorzano, C. L. 1969. Studies of nitrate reductase in marine phytoplankton1. Limnol. Oceanogr., 14, 194–205.
https://doi.org/10.4319/lo.1969.14.2.0194
26. Estrada, B., Aroca, R., Barea, J. M. and Ruiz-Lozano, J. M. 2013. Native arbuscular mycorrhizal fungi isolated from a saline habitat improved maize antioxidant systems and plant tolerance to salinity. Plant Sci., 201, 42–51.
https://doi.org/10.1016/j.plantsci.2012.11.009
27. Evelin, H., Devi, T. S., Gupta, S. and Kapoor, R. 2019. Mitigation of salinity stress in plants by arbuscular mycorrhizal symbiosis: current understanding and new challenges. Front Plant Sci., 10, 470.
https://doi.org/10.3389/fpls.2019.00470
28. Fakhech, A., Jemo, M., Manaut, N., Ouahmane, L. and Hafidi, M. 2021. Impact of mycorrhization on phosphorus utilization efficiency of Acacia gummifera and Retama monosperma under salt stress. Forests, 12, 611–625.
https://doi.org/10.3390/F12050611
29. Fall, F., Diégane, D., Fall, D., Bakhoum, N., Thioye, B., Kane, A. et al. 2017. Growth and physiological responses of Sporobolus robustus kunth seedlings to salt stress. Arid Land Res. Manag., 31, 46–56.
https://doi.org/10.1080/15324982.2016.1246491
30. Foyer, C. H. and Noctor, G. 2010. Redox sensing and signalling associated with reactive oxygen in chloroplasts, peroxisomes and mitochondria. Physiol.Plantarum, 119, 355–364.
https://doi.org/10.1034/j.1399-3054.2003.00223.x
31. García-Caparrós, P. and Lao, M. T. 2018. The effects of salt stress on ornamental plants and integrative cultivation practices. Sci. Hortic., 240, 430–439.
https://doi.org/10.1016/j.scienta.2018.06.022
32. Garg, N. and Pandey, R. 2015. Effectiveness of native and exotic arbuscular mycorrhizal fungi on nutrient uptake and ion homeostasis in salt-stressed Cajanus cajan L. (Millsp.) genotypes. Mycorrhiza, 25, 165–180.
https://doi.org/10.1007/s00572-014-0600-9
33. Giannopolitis, C. N. and Ries, S. K. 1977. Superoxide dismutases: I. Occurrence in higher plants. Plant Physiol., 59(2), 309–314.
https://doi.org/10.1104/pp.59.2.309
34. Gonçalves, D. R., Pena, R., Zotz, G. et al. 2021. Effects of fungal inoculation on the growth of Salicornia (Amaranthaceae) under different salinity conditions. Symbiosis, 84, 195–-208.
https://doi.org/10.1007/s13199-021-00783-3
35. Gong, L. Z., Zhang, Z. Q., Li, Y. L. and Jun, P. 2011. Growth, cadmium accumulation and physiology of marigold (Tagetes erecta L.) as affected by arbuscular mycorrhizal fungi. Pedosphere, 21, 319–327.
https://doi.org/10.1016/S1002-0160(11)60132-X
36. Gong, Z., Chen, W. W., Bao, G. Z., Sun, J. X., Ding, X. M. and Fan, C. X. 2020. Physiological response of Secale cereale L. seedlings under freezing-thawing and alkaline salt stress. Environ. Sci. Pollut. Res., 27, 1499–1507.
https://doi.org/10.1007/s11356-019-06799-z
37. Guo, J. R., Zheng, C. C., Li, Y. D., Fan, H. and Wang, B. S. 2017. Effects of NaCl treatment on root system characteristics and activity of the euhalophyte Suaeda salsa. Plant Physiol., 53, 63–70 (in Chinese).
https://doi.org/10.13592/j.cnki.ppj.2016.0521
38. Gupta, S., Schillaci, M., Walker, R., Smith, P. M. C., Watt, M. and Roessner, U. 2021. Alleviation of salinity stress in plants by endophytic plant-fungal symbiosis: current knowledge, perspectives and future directions. Plant Soil, 461, 219–244.
https://doi.org/10.1007/s11104-020-04618-w
39. Hajiboland, R. 2013. Role of arbuscular mycorrhiza in amelioration of salinity. In Salt Stress in Plants (Ahmad, P., Azooz, M. M. and Prasad, M. N. V., eds). Springer, New York, 301–354.
https://doi.org/10.1007/978-1-4614-6108-1_13
40. Hajiboland, R., Aliasgharzad, N., Laiegh, S. F. and Poschenrieder, C. 2010. Colonization with arbuscular mycorrhizal fungi improves salinity tolerance of tomato (Solanum lycopersicum L.) plants. Plant Soil, 331, 313–327.
https://doi.org/10.1007/s11104-009-0255-z
41. Hasanuzzaman, M., Nahar, K. and Fujita, M. 2013. Plant response to salt stress and role of exogenous protectants to mitigate salt-induced damages. InEcophysiology and responses of plants under salt stress (Ahmad, P., Azooz, M. and Prasad, M., eds). Springer, New York, 25–87.
https://doi.org/10.1007/978-1-4614-4747-4_2
42. Hashem, A., Alqarawi, A. A., Radhakrishnan, R., Al-Arjani, A. B. F., Aldehaish, H. A., Egamberdieva, D. and Abd_Allah, E. F. 2018. Arbuscular mycorrhizal fungi regulate the oxidative system, hormones and ionic equilibrium to trigger salt stress tolerance in Cucumis sativus L. Saudi J. Biol. Sci., 25,1102–1114.
https://doi.org/10.1016/j.sjbs.2018.03.009
43. He, W., Fan, X., Zhou, Z., Zhang, H. and Geng, G. 2020. The effect of Rhizophagus irregularis on salt stress tolerance of Elaeagnus angustifolia roots. J.Forestry Res., 31, 2063–2073.
https://doi.org/10.1007/s11676-019-01053-1
44. Hidri, R., Mahmoud, O., Farhat, N., Cordero, I., Pueyo, J., Debez, A. et al. 2019. Arbuscular mycorrhizal fungus and rhizobacteria affect the physiology and performance of Sulla coronaria plants subjected to salt stress by mitigation of ionic imbalance. J. Plant Nutr. Soil Sc., 182, 451–462.
https://doi.org/10.1002/jpln.201800262
45. Huang, D., Ma, M., Wang, Q., Zhang, M., Jing, G., Li, C. and Ma, F. 2020. Arbuscular mycorrhizal fungi enhanced drought resistance in apple by regulating genes in the MAPK pathway. Plant Physiol. Bioch., 149, 245–255.
https://doi.org/10.1016/j.plaphy.2020.02.020
46. Hussain, H. A., Qingwen, Z., Hussain, S., Hongbo, L., Waqqas, A. and Li, Z. 2021. Effects of arbuscular mycorrhizal fungi on maize growth, root colonization, and root exudates varied with inoculum and application method. J. Soil Sci, Plant Nutr., 21, 1577–1590.
https://doi/10.1007/s42729-021-00463-7
47. Islam, M. J., Ryu, B. R., Obyedul, M., Azad, K., Lim, Y.S. 2021. Exogenous putrescine enhances salt tolerance and ginsenosides content in korean ginseng (Panax ginseng meyer) sprouts. Plants, 10, 1313.
https://doi.org/10.3390/plants10071313
48. Janah, I., Meddich, A., Elhasnaoui, A., Khayat, S., Anli, M., Boutasknit, A. et al. 2021. Arbuscular mycorrhizal fungi mitigates salt stress toxicity in Stevia rebaudiana bertoni through the modulation of physiological and biochemical responses. J. Soil Sci. Plant Nutr., 21(4).
https://doi.org/10.1007/s42729-021-00690-y
49. Jiang, F., Zhang, L., Zhou, J., George, T. S. and Feng, G. 2020. Arbuscular mycorrhizal fungi enhance mineralization of organic phosphorus (p) by carrying bacteria along their extraradical hyphae. New Phytol., 230, 304–315.
https://doi.org/10.1111/nph.17081
50. Johny, L., Cahill, D. M. and Adholeya, A. 2021. AMF enhance secondary metabolite production in ashwagandha, licorice, and marigold in a fungi-host specific manner. Rhizosphere, 17, 100314.
https://doi.org/10.1016/j.rhisph.2021.100314
51. Karagöz, F. P. and Dursun, A. 2021. Calcium nitrate on growth and ornamental traits at salt-stressed condition in ornamental kale (Brassica oleracea L. var. Acephala). Ornam. Hortic., 27(2), 196–203.
https://doi.org/10.1590/2447-536X.v27i2.2246
52. Kaur, H. and Garg, N. 2021. Interactive effects of zinc-arbuscular mycorrhizal (AM) fungi on cadmium uptake, rubisco, osmolyte synthesis and yield in Cajanus cajan (L.) Millsp. Int. J. Sust. Agr., 8(1), 17–42.
https://doi.org/10.18488/journal.70.2021.81.17.42
53. Kirk, L. P. 1950. Kjeldahl method for total nitrogen. Anal. Chem., 22, 354–358.
https://doi.org/10.1021/ac60038a038
54. Kumar, P. 2021. Stress amelioration response of glycine betaine and arbuscular mycorrhizal fungi in sorghum under Cr toxicity. Plos One, 16, e0253878.
https://doi.org/10.1371/journal.pone.0253878
55. Lata, C., Kumar, A., Rani, S. and Mann, A. 2019. Effect of salt stress on root physio-biochemical traits of Sporobolus marginatus (Grass Halophyte). Ann. Biol., 1, 83–86.
56. Latef, A. and He, C. 2011. Effect of arbuscular mycorrhizal fungi on growth, mineral nutrition, antioxidant enzymes activity and fruit yield of tomato grown under salinity stress. Sci. Hortic., 127, 228-233.
https://doi.org/10.1016/j.scienta.2010.09.020
57. Latef, A., Tahjib-Ul-Arif, M., Rhaman, M. S. 2021. Exogenous auxin-mediated salt stress alleviation in faba bean (Vicia faba L). Agronomy, 11, 547.
https://doi.org/10.3390/agronomy11030547
58. Laouane, R.B., Meddich, A., Bechtaoui, N., Oufdou, K. and Wahbi, S. 2019. Effects of arbuscular mycorrhizal fungi and rhizobia symbiosis on the tolerance of Medicago sativa to salt stress. Gesunde Pflanz., 71, 135–146.
https://doi.org/10.1007/s10343-019-00461-x
59. Li, H. S. 2000. Principles and Techniques of Plant Physiological Experiment. Higher Education Press, Beijing.
60. Li, J. G., Pu, L. J., Han, M., Zhu, M., Zhang, R. and Xiang, Y. 2014. Soil salinization research in china: advances and prospects. J. Geogr. Sci., 24, 943–960.
https://doi.org/10.1007/s11442-014-1130-2.
61. Liu, H., Lu, X., Li, Z., Tian, C. and Song, J. 2021. The role of root-associated microbes in growth stimulation of plants under saline conditions. Land Degrad. Dev., 32, 3471–3486.
https://doi.org/10.1002/ldr.3955
62. Liu, R. J. and Luo, X. S. 2010. A new method to quantify the inoculum potential of arbuscular mycorrhizal fungi. New Phytol., 128, 89–92.
https://doi.org/10.1111/j.1469-8137.1994.tb03990.x
63. Liu, R. J. and Wang, L. 2018. Biological Symbiotics. Science Press, Beijing.
64. Liu, S. L., Guo, X. L., Feng, G., Maimaitiaili, B., Fan, J. L. and He, X. H. 2016. Indigenous arbuscular mycorrhizal fungi can alleviate salt stress and promote growth of cotton and maize in saline fields. Plant Soil, 398, 195–206.
https://doi.org/10.1007/s11104-015-2656-5
65. Liu, X. L., Zhang, H., Jin, Y. Y., Wang, M. M., Yang, H. Y., Ma, H. Y. et al. 2019. Abscisic acid primes rice seedlings for enhanced tolerance to alkaline stress by upregulating antioxidant defense and stress tolerance-related genes. Plant Soil, 438, 39–55.
https://doi.org/10.1007/s11104-019-03992-4
66. Loudari, A., Benadis, C., Naciri, R., Soulaimani, A. and Oukarroum, A. 2020. Salt stress affects mineral nutrition in shoots and roots and chlorophyll a fluorescence of tomato plants grown in hydroponic culture. J. Plant Interact., 15, 398–405.
https://doi.org/10.1080/17429145.2020.1841842
67. Lutts, S., Kinet, J. M. and Bouharmont, J. 1996. NaCl-induced senescence in leaves of rice (Oryza sativa L.) cultivars differing in salinity resistance. Ann. Bot., 78, 389–398.
https://doi.org/10.1006/anbo.1996.0134
68. Mardukhi, B., Rejali, F., Daei, G., Ardakani, M. R., Malakouti, M. J. and Miransari, M. 2015. Mineral uptake of mycorrhizal wheat (Triticum aestivum L.) under salinity stress. Commun. Soil Sci. Plan, 46, 343–357.
https://doi.org/10.1080/00103624.2014.981271
69. Marschner, P. 2012. Rhizosphere biology. In Marschner’s mineral nutrition of higher plants (Marschner, P., ed.). 3rd ed. Academic Press, USA, 369–388.
https://doi.org/10.1016/B978-0-12-384905-2.00015-7
70. Medeiros, M. J. L., Silva, M. M. A., Granja, M. M. C., Silva-Júnior, G., Camara, T. and Willadino, L. 2015. Effect of exogenous proline in two sugarcane genotypes grown in vitro under salt stress. Acta biol. Colomb., 20(2), 57–63.
http://dx.doi.org/10.15446/abc.v20n2.42830
71. Merieme, S., Salama, A., Hanane, B., Abderrahim, F., Allal, D., Abdelilah, M. et al. 2022. Effectiveness of indigenous arbuscular mycorrhizal consortium on the growth and mineral nutrition of Argania spinosa (L.) skeels, Plant Biosyst., 156.
http://doi.org/10.1080/11263504.2022.2048280
72. Moitinho, M. R., Fernandes, C., Truber, P. V., Marcelo, A. V. and Bicalho, E. 2020. Arbuscular mycorrhizal fungi and soil aggregation in a no-tillage system with crop rotation. J. Plant Nutr. Soil Sc., 183, 482–491.
https://doi.org/10.1002/jpln.201900456
73. Monreal, J. A., Jimenez, E. T., Remesal, E., Morillo-Velarde, R., García-Mauriño, S., Echevarría, C. 2007. Proline content of sugar beet storage roots: Response to water deficit and nitrogen fertilization at field conditions. Environ. Exp. Bot. 60, 257–267.
https://doi.org/10.1016/j.envexpbot.2006.11.002
74. Mosaddeghi, M. R., Hosseini, F., Hajabbasi, M. A., Sabzalian, M. R. and Sepehri, M. 2021. Epichlo spp. and Serendipita indica endophytic fungi: functions in plant-soil relations. Adv. Agron., 165, 59–113.
https://doi.org/10.1016/bs.agron.2020.09.001
75. Motaleb, N. A. A., Elhady, S. A. A. and Ghoname, A. A. 2020. AMF and Bacillus megaterium neutralize the harmful effects of salt stress on bean plants. Gesunde Pflanz., 72, 29–39.
https://doi.org/10.1007/s10343-019-00480-8
76. Murugesan, C., Mak, C., Kiyoon, K., Sundaram, S. and Tongmin, S. 2019. Impact of arbuscular mycorrhizal fungi on photosynthesis, water status, and gas exchange of plants under salt stress-a meta-analysis. Front. Plant Sci., 1, 457–467.
https://doi.org/10.3389/fpls.2019.00457
77. Nacoon, S., Ekprasert, J., Riddech, N., Mongkolthanaruk, W. and Boonlue, S. 2021. Growth enhancement of sunchoke by arbuscular mycorrhizal fungi under drought condition. Rhizosphere, 17, 100308.
https://doi.org/10.1016/j.rhisph.2021.100308
78. Nahar, K., Hasanuzzaman, M., Rahman, A., Alam, M., Mahmud, J.-A., Suzuki, T. and Fujita, M. 2016. Polyamines confer salt tolerance in mung bean (Vigna radiata L.) by reducing sodium uptake, improving nutrient homeostasis, antioxidant defense, and methylglyoxal detoxification systems. Front. Plant Sci., 7, 1104–1118. https://doi.org/10.3389/fpls.2016.01104
79. Nakano, Y. and Asada, K. 1981. Hydrogen peroxide is scavenged by ascorbate-specific peroxidase in spinach chloroplasts. Plant Cell Physiol., 22(5), 867–880.
https://doi.org/10.1093/oxfordjournals.pcp.a076232
80. Ortaş, I., Rafique, M. and Iqbal, M. T. 2019. Mycorrhizae resource allocation in root development and root morphology. In Plant Microbe Interface (Varma,A., Tripathi, S. and Prasad, R., eds). Springer, Cham, 1–26.
https://doi.org/10.1007/978-3-030-19831-2_1
81. Parihar, M., Rakshit, A., Rana, K., Tiwari, G. and Jatav, S. S. 2020. Arbuscular mycorrhizal fungi mediated salt tolerance by regulating antioxidant enzyme system, photosynthetic pathways and ionic equilibrium in pea (Pisum sativum L.). Biol. Futura, 71, 289–300.
https://doi.org/10.1007/s42977-020-00037-1
82. Parvin, S., Geel, M. V., Yeasmin, T., Verbruggen, E. and Honnay, O. 2020. Effects of single and multiple species inocula of arbuscular mycorrhizal fungi on the salinity tolerance of a bangladeshi rice (Oryza sativa L.) cultivar. Mycorrhiza, 30, 431–444.
https://doi.org/10.1007/s00572-020-00957-9
83. Pellegrino, E. and Bedini, S. 2014. Enhancing ecosystem services in sustainable agriculture: biofertilization and biofortification of chickpea (Cicer arietinum L.) by arbuscular mycorrhizal fungi. Soil Biol. Biochem., 68, 429–439.
https://doi.org/10.1016/j.soilbio.2013.09.030
84. Pollastri, S., Savvides, A., Pesando, M., Lumini, E., Volpe, M. G., Ozudogru, E. A. et al. 2018. Impact of two arbuscular mycorrhizal fungi on Arundo donax l. response to salt stress. Planta, 247, 573–585.
https://doi.org/10.1007/s00425-017-2808-3
85. Qian, R., Ma, X., Zhang, X., Hu, Q. and Zheng, J. 2021. Effect of exogenous spermidine on osmotic adjustment, antioxidant enzymes activity, and gene expression of Gladiolus Gandavensis seedlings under salt stress. J. Plant Growth Regul., 40, 1353-–1367.
https://doi.org/10.1007/s00344-020-10198-x
86. Rahimi, S., Baninasab, B., Talebi, M., Gholami, M. and Zarei, M. 2021. Arbuscular mycorrhizal fungi inoculation improves iron deficiency in quince via alterations in host root phenolic compounds and expression of genes. Sci. Hortic., 285, 110165.
https://doi.org/10.1016/j.scienta.2021.110165
87. Redman, Z. C., Parikh, S. J., Hengel, M. J. and Tjeerdema, R. S. 2019. Influence of flooding, salinization, and soil properties on degradation of chlorantraniliprole in California rice field soils. J. Agr. Food Chem., 67, 8130–8137.
https://doi.org/10.1021/acs.jafc.9b02947
88. Romero-Munar, A., Baraza, E., Gulías, J. and Cabot, C. 2019. Arbuscular mycorrhizal fungi confer salt tolerance in giant reed (Arundo donax L.) plants grown under low phosphorus by reducing leaf Na+ concentration and improving phosphorus use efficiency. Front Plant Sci., 10, 843–875.
https://doi.org/10.3389/fpls.2019.00843
89. Sahur, A., Nasaruddin and Muthmainnah. 2020. Growth response of pepper (Piper nigrum L.) on application arbuscular mycorrhizal fungi (AMF) and the shallot filtrate. IOP: Earth Environ. Sci., 486, 012130.
https://doi.org/10.1088/1755-1315/486/1/012130
90. Sami, F., Yusuf, M., Faizan, M., Faraz, A. and Hayat, S. 2016. Role of sugars under abiotic stress. Plant Physiol. Biochem., 109, 54–61.
91. Santander, C., Ruiz, A., García, S., Aroca, R., Cumming, J. and Cornejo, P. 2020. Efficiency of two arbuscular mycorrhizal fungal inocula to improve saline stress tolerance in lettuce plants by changes of antioxidant defense mechanisms. J. Sci. Food Agr., 100, 1577–1587.
https://doi.org/10.1002/jsfa.10166
92. Sofy, M., Mohamed, H., Soliman, M. H., Dawood, M. and Abu-Elsaoud, A. 2021. Integrated usage of arbuscular mycorrhizal and biochar to ameliorate salt stress on spinach plants. Arch. Agron. Soil Sci., 1–22.
https://doi.org/10.1080/03650340.2021.1949709
93. Tabatabai, M. A. 1997. Handbook of Reference Methods for Plant Analysis. Crop Sci., 38(6), 1710–1711.
https://doi.org/10.2135/cropsci1998.0011183X003800060050x
94. Thangavel, P., Anjum, N. A., Muthukumar, T., Sridevi, G., Vasudhevan, P. and Maruthupandian, A. 2022. Arbuscular mycorrhizae: natural modulators of plant–nutrient relation and growth in stressful environments. Arch. Microbiol., 204(5), 264.
https://doi.org/10.1007/s00203-022-02882-1
95. Theerawitaya, C., Tisarum, R., Samphumphuang, T., Takabe, T. and Cha-um, S. 2020. Expression levels of the Na+/K+ transporter Oshkt2;1 and vacuolar Na+/H+ exchanger Osnhx1, Na enrichment, maintaining the photosynthetic abilities and growth performances of indica rice seedlings under salt stress. Physiol. Mol. Biol. Pla., 26, 513–523.
https://doi.org/10.1007/s12298-020-00769-3
96. Tiwari, S., Lata, C., Chauhan, P. S. and Nautiyal, C. S. 2016. Pseudomonas putida attunes morphophysiological, biochemical and molecular responses in Cicer arietinum L. during drought stress and recovery. Plant Physiol. Bioch., 99, 108–117.
https://doi.org/10.1016/j.plaphy.2015.11.001
97. Vaingankar, J. D. and Rodrigues, B. F. 2014. Effect of arbuscular mycorrhizal (AM) inoculation on growth and flowering in Crossandra infundibuliformis(L.) nees. J. Plant Nutr., 38, 1478–1488.
https://doi.org/10.1080/01904167.2014.957398
98. Wang, H., Liang, L., Liu, B., Huang, D., Liu, S., Liu, R. et al. 2020. Arbuscular mycorrhizas regulate photosynthetic capacity and antioxidant defense systems to mediate salt tolerance in maize. Plants, 9, 1430–1447.
https://doi.org/10.3390/plants9111430
99. Wang, J., Zhai, L., Ma, J., Zhang, J., Wang, G. G., Liu, X. et al. 2020. Comparative physiological mechanisms of arbuscular mycorrhizal fungi in mitigating salt-induced adverse effects on leaves and roots of Zelkova serrata. Mycorrhiza, 30, 341–355.
https://doi.org/10.1007/s00572-020-00954-y
100. Xu, H., Lu, Y. and Tong, S. 2018. Effects of arbuscular mycorrhizal fungi on photosynthesis and chlorophyll fluorescence of maize seedlings under salt stress. Emir. J. Food Agr., 30, 199–204.
https://doi.org/10.9755/ejfa.2018.v30.i3.1642
101. Yang, J. X., Li, Q. W., Liu, Y. X., Xu, X. L., Zhang, Q. X., Li, W. G. and Sun, Y. F. 2018. Effects of NaCl stress on the germination and physiological characteristics of Prunus mume and Prunus davidiana seeds. J. Nort Forest Univ., 33, 94–99.
102. Yang, R., Qin, Z. F., Wang, J. J., Zhang, X. X., Xu, S., Zhao, W. et al. 2022. The interactions between arbuscular mycorrhizal fungi and Trichoderma longibrachiatum enhance maize growth and modulate root metabolome under increasing soil salinity. Microorganisms, 5, 1042.
https://doi.org/10.3390/microorganisms10051042
103. Yang, X., Yu, H., Zhang, T., Guo, J. and Zhang, X. 2016. Arbuscular mycorrhizal fungi improve the antioxidative response and the seed production of suaedoideae species Suaeda physophora pall under salt stress. Not. Bot. Horti Agrobo., 44(2), 533–540.
https://doi.org/10.15835/nbha44210543
104. Yarahmadi, M. A., Shahsavani, S., Akhyani, A. and Dorostkar, V. 2018. Pomegranate growth affected by arbuscular mycorrhizae, phosphorus fertilizer, and irrigation water salinity. Commun. Soil Sci. Plan., 49, 478–488.
https://doi.org/10.1080/00103624.2018.1431265
105. Yasmeen, T., Tariq, M., Iqbal, S., Arif, M. S. and Li, T. 2019. Ameliorative capability of plant growth promoting rhizobacteria (PGPR) and arbuscular mycorrhizal fungi (AMF) against salt stress in plant. In Plant Abiotic Stress Tolerance, Molecular And Biotechnological Approaches (Hasanuzzaman, M., Hakeem, K., Nahar, K. and Alharby, H., eds). Springer, 409–448.
https://doi.org/10.1007/978-3-030-06118-0_17
106. Zai, X. M., Fan, J. J., Hao, Z. P, Liu, X. M. and Zhang, W. X. 2021. Effect of co-inoculation with arbuscular mycorrhizal fungi and phosphate solubilizing fungi on nutrient uptake and photosynthesis of beach palm under salt stress environment. Sci. Rep., 11, 5761–5773.
https://doi.org/10.1038/s41598-021-84284-9
107. Zhang, X. F., Yang, X. R. and Jiao, Z. W. 2018. Research progress of salt tolerance evaluation in plants and tolerance evaluation strategy. J. Biol., 35, 91–94.
https://doi.org/10.3969/j.issn.2095-1736.2018.06.091
108. Zhao, Z. J., Zhang, H. L., Wang, M. J., Zhang, X. M. and Li, L. X. 2020. Salt stress-related regulation mechanism of intracellular pH and ion homeostasis in plants. J. Appl. Ecol., 56, 337–344 (in Chinese).
https://doi.org/10.13592/j.cnki.ppj.2020.0030
109. Zhu, S., Zhou, X., Wu, X. and Jiang, Z. 2013. Structure and function of the CBL–CIPK Ca2+-decoding system in plant calcium signaling. Plant Mol. Biol.Rep., 31, 1193–1202.
https://doi.org/10.1007/s11105-013-0631-y