
1. INTRODUCTION 
 
The ornamental flower industry has developed rapidly. 
However, with the increase of primary and secondary soil 
salinization since the beginning of the 21st century, soil 
salinization has become one of the major problems of 
flowers planted for urban greening (Li et al. 2014; Zhang 
et al. 2018; Redman et al. 2019), affecting the growth of 
many ornamental plants (Yang et al. 2018; Al-Farsi et al. 
2021). Salt stress negatively impacts the ornamental value 
of plants (Acosta-Motos et al. 2014; Karagöz and Dursun 
2021), leads to nutrient imbalance in plants, influences 
photosynthesis and produces reactive oxygen species 
(ROS), then reduces the biomass of the plant and the 

number and quality of its flowers, and affects the flower -
ing period of plants (García-Caparrós and Lao 2018). 
Therefore, it is crucial to explore ways of improving salt 
tolerance in ornamental plants in order to promote the 
development of the flower industry. Recently, increasing 
attention is being paid to the role of plant symbiotic 
microbes in improving plant salt tolerance, particularly 
arbuscular mycorrhizal (AM) fungi (Chandrasekaran et 
al. 2019; Motaleb et al. 2020; Abbaspour et al. 2021; 
Fakhech et al. 2021). 

AM fungi play important roles in promoting the 
growth and productivity of host plants by regulating their 
morphological, biochemical and physiological character -
istics (Hussain et al. 2021; Thangavel et al. 2022). Plants 
colonized with AM fungi are able to obtain additional water 
and nutrients, thus alleviating the reduction of growth and 
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Abstract. Soil salinization is a global environmental problem. Arbuscular mycorrhizal (AM) fungi are capable of enhancing plant 
resistance to stress, for instance, improving plant tolerance to salinity stress. A pot experiment was carried out to determine the effects 
of AM fungi (Funneliformis mosseae, Rhizophagus intraradices, or F. mosseae and R. intraradices combined) and five different 
NaCl levels on the growth and physiology of Tagetes erecta under greenhouse conditions. The results showed that dual inoculation 
with F. mosseae and R. intraradices significantly increased total root length, root surface area, root volume, and root tip number of 
T. erecta plants under salt stress. Inoculation with AM fungi inhibited Na+ accumulation in leaves and promoted the absorption of 
N, P, K, and Ca in leaves, and thus increased ratios of K+/Na+, Ca2+/Na+, N/Na+, and P/Na+ in leaves under salt stress. Correlation 
analysis showed that the coefficient (0.964) between root volume and K+ in leaves was the highest, while the correlation between 
root surface area and Na+ content in leaves was remarkably negative (–0.95). AM fungi improved the osmotic regulation ability of 
plant cells, increased the activity of antioxidant enzymes, and reduced the damage of cell membranes. It is concluded that AM fungi 
improved salt tolerance of Tagetes erecta by changing root morphological traits, regulating uptakes of Na+ and other nutrient elements, 
and enhancing antioxidant enzyme activities and osmotic adjustment. 
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leaf area caused by salt stress, and increase biomass, 
especially root biomass (Latef and He 2011; Xu et al. 
2018; Gonçalves et al. 2021; Janah et al. 2021). It is well 
documented that AM fungi increase plant salt tolerance 
(Hashem et al. 2018; Murugesan et al. 2019; Wang H. et al. 
2020). Under salt stress, AM fungi colonize roots, change 
the root morphology, increase the number and length of 
capillary and fibrous roots, further enhance root activity, 
and increase water absorption to improve plant’s tolerance 
to salt stress (Murugesan et al. 2019; He et al. 2020; Parvin 
et al. 2020; Andrzejak and Janowska 2021; Liu et al. 2021). 
AM fungi also increase the absorption of minerals, main -
tain the balance of mineral elements in plants under salt 
stress, and thus enhance tolerance to salt stress (Mardukhi 
et al. 2015; Yarahmadi et al. 2018; Romero-Munar et al. 
2019; Wang J. et al. 2020). Hashem et al. (2018) found 
that inoculation with AM fungi significantly promoted the 
absorption of K, Ca, Mg, Zn, Fe, Mn, and Cu in cucumber 
(Cucumis sativus L.), while significantly reducing the 
absorption of harmful ions, such as Na+. Zai et al. (2021) 
reported that combined inoculation with AM fungus 
Funneliformis mosseae and phosphate-solubilizing fungus 
Apophysomyces spartima on Prunus maritima under 170 mM 
NaCl increased N, P, and K uptake, root growth and net 
photosynthetic efficiency, thus alleviating salt stress. AM 
fungi significantly promote the uptake of P, K, Ca, and Mg 
by roots and leaves and regulate K+/Na+ ratio in roots, thus 
alleviating the nutrient deficiency caused by osmotic stress 
(Wang, J. et al. 2020; Merieme et al. 2022; Thangavel et al. 
2022). AM fungi regulate K, Ca, and P absorption and dis -
tribution as well as mineral element ion balance in plants, 
which is the key to improving salt tolerance of plants (Hidri 
et al. 2019; Yang et al. 2022). The absorption of mineral 
elements depends on root traits such as root growth and 
development; AM fungi have been found to promote both 
(Liu and Wang 2018; Sahur 2020; Rahimi et al. 2021). 

In addition, the mechanisms of AM fungal colonisa -
tion on salt-affected plants also include the improved 
production of antioxidant enzymes and osmotic sub- 
stances (Kaur et al. 2021; Kumar 2021). Increasing the 
activities of certain antioxidant enzymes and antioxidant 
molecules to limit oxidative damage is an important 
strategy of mycorrhizal plants to enhance salt tolerance 
(Laouane et al. 2019). Plant cells are protected by a com -
plex antioxidant system that contains both non-enzyme 
and enzymatic antioxidants that reduce the harmful effects 
of  ROS (Foyer and Noctor 2010; Evelin et al. 2019). AM 
fungi can protect plants from salt by reducing salt-induced 
oxidative stress (Dashtebani et al. 2014). Some studies 
reported higher activity of antioxidant defense enzymes 
in AM plants, which is associated with improved growth 
under salinity (Laouane et al. 2019; Latef et al. 2021). 
Inoculation with AM fungi promotes plant growth by 
reducing the damage caused by malondialdehyde (MDA, 

a product of lipid peroxidation) and H2O2 accumulation 
under salt stress (Yang et al. 2016; Boutasknit et al. 2020). 
Proline and soluble protein are important osmotic regu -
latory sub stances, which can reduce osmotic potential of 
cells, enhance water holding capacity, and maintain nor -
mal physiological metabolism of plants under stress 
(Gong et al. 2020). Higher proline concentrations indicate 
a better state of osmotic regulation, which may benefit the 
absorp tion of water and nutrients and higher concen tra -
tions of proline in AM plants than in non-AM plants have 
been reported at different salinity levels (Liu et al. 2016; 
Pollastri et al. 2018; Mosaddeghi et al. 2021). The in -
creases in sol uble protein content can also serve as an 
energy resource for plants under abiotic stress (Sami et al. 
2016). 

At present, studies have shown that AM fungi can 
improve the ability of horticultural crops and trees to resist 
salt stress (Diao et al. 2021; Sofy et al. 2021), but there are 
few studies on the application of AM fungi on orna mental 
plants in high salinity conditions. Tagetes erecta is an im -
portant plant with high ornamental, economic and medical 
value in the garden flower industry. However, its growth 
and production are adversely affected by soil salinity in 
the planting regions in northern China. Studies show that 
AM fungi promote the early flowering of T. erecta and im -
prove its ornamental quality (Vaingankar and Rodrigues 
2014); increase the yield of secondary metabolites and the 
content of economically important medicinal components 
(Engel et al. 2016; Johny et al. 2021); improve the toler -
ance of T. erecta to heavy metal stress (Castillo et al. 2011; 
Gong et al. 2011; Elhindi et al. 2018) and drought (Asrar 
and Elhindi 2011). However, whether AM fungi promote 
the growth and flowering of T. erecta under salt stress 
remains unknown. The objective of this study was to 
reveal the functional relationship between AM fungus-
mediated root traits and mineral nutrient absorption, 
relative balance of nutrients and Na, and plant tolerance 
to salt. The outcomes of this study have a practical sig -
nificance in improving salt tol erance of T. erecta and other 
garden plants. 

 
 

2. MATERIALS  AND  METHODS 
 
2.1. Experimental  materials 
 
Seeds of Tagetes erecta were purchased from Muyangdou 
Seed Research Industry Co., LTD, China. AM fungal inocula 
of Funneliformis mosseae and Rhizophagus intraradices 
composed uniform mixture of root segments, fungal 
mycelium, spores and sand, provided by Mycorrhizal 
Biotechnology Institute of Qingdao Agricultural University. 
Plastic pots (20 cm diameter × 25 cm depth) sterilized with 
5% sodium hypochlorite were filled with autoclaved 
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(121 °C for 1.5 h) mixed soil (loam soil/vermiculite in 

1:3 ratio) to grow T. erecta plants. The loam soil had 17.7% 

organic matter, 0.02% soil salt content, 156.1 mg kg–1 

available N, 26.6 mg kg–1 available P, and 45.3 mg kg–1 

available K, at a pH of 6.96. 

 

2.2. Experimental  design 
 
A two-factor randomized block design consisting of four 

AM fungal inoculation variants and five levels of salt 

strength was used in this study with a total of 20 treat -

ments. Three AM fungal inoculations were inoculation 

with F. mosseae, R. intraradices, and both F. mosseae and 

R. intraradices combined, and the fourth control group 

received no inoculation. Salt treatments were given with 

0.2%, 0.4%, 0.6%, or 0.8% NaCl solution, the control group 

received no salt treatment. There were nine plants (pots) 

in each treatment, and seven of them were randomly se -

lected for measuring growth and physiology parameters. 

 

2.3. Sowing,  inoculation,  and  management 
 
The experiments were conducted in a sunlit greenhouse 

at Qingdao Agricultural University from March to October 

2019 (23/15 °C day/night, 12/12 h light/dark, relative hu -

midity 60–70%). For inoculation treatments, 12 000 units 

of inoculum potential (IP) of F. mosseae, R. intraradices, 

or F. mosseae combined with R. intraradices inocula were 

distributed to pots according to the experimental design 

by mixing in with the soil. The units of IP were measured 

with the methods described by Liu and Luo (2010) and 

calculated as IP = N × W × K + S, where IP is the inocu -

lation potential, N is the number of vesicles in the root 

segment per unit length, W is the root weight (g), K is the 

root length per unit mass (cm), and S is the number of 

spores in the inocula per unit mass or volume. The uninocu -

lated controls received 50 g of autoclaved inocula and 

30 mL of filtrate (< 20 μm) of the same inocula in each pot.  

Healthy and uniform sized seeds of T. erecta were 

soaked in a 10% H2O2 solution for two minutes, rinsed, 

and sown in seedling trays. Seedlings with 3–4 leaves 

were transplanted into pots. Seven days after trans plant -

ing, 30 mL of the salt solution was added every week, for 

a total of three times with the final NaCl concentration re -

aching the designed level, respectively. Plants were watered 

twice a week. Plants in each pot were given 200 mL of 

Hoagland’s nutrient solution (half strength) every two 

weeks. Hoagland’s nutrient solution (half strength) con -

tains 607 mg/L K2SO4, 57.5 mg/L (NH4)2PO4, 493 mg/L 

MgSO4, 20 mg/L EDTA ferric-sodium salt, 15 mg/L FeSO4, 

2.86 mg/L H3BO3, 4.5 mg/L Na2B4O7·10H2O, 2.13 mg/L 

MnSO4, 0.05 mg/L CuSO4, 0.22 mg/L ZnSO4 and 0.02 mg/L 

(NH4)2SO4. 

2.4. Parameter  measurements  and  methods 
 
For the assessment of AM fungal colonisation and hyphal 

density six T. erecta plants were harvested from each treat -

ment 30 days after adding NaCl. Fine roots were cut into 

1 cm segments, cleared in 10% KOH, bleached in 2% HCl 

for 20 minutes, and stained with 0.05% trypan blue. Thirty 

fragments were examined for AM colonisation under a 

digital computerized microscope at eyepiece 10×, objec -

tive 10× and 40× (BX50 Olympus Microscope, Tokyo, 

Japan). All AM fungal structures including hyphae, arbus -

cules, and vesicles found in the roots were recorded. The total 

mycorrhizal colonisation percentage was determined with 

the method described by Biermann and Linderman (1981). 

Hyphal density was measured using the hyphal extraction 

and filtration method. After trypan blue stain ing, the grid 

crossing method was used to count the inter section points 

and calculate the hyphal density (Abbott et al. 1984). 

Root morphological traits and root activity were exam -

ined as follows: root length, root tip number, total root 

surface area, and total root volume were analysed on 

scanned root images in the root scanner (WinRHIZO 

Version 2016a, Regent Instruments Inc., Canada). Root 

activity was determined by triphenyltetrazolium chloride 

(TTC) colorimetry (Li 2000). Five mL of 0%, 0.005%, 

0.01%, 0.02%, 0.03% and 0.04% TTC solution was pre -

pared and placed into the calibration test tube, mixed 

thoroughly with 5 mL of ethyl acetate and a small amount 

of Na2S2O4, and then the red methyl hydrazine was pro -

duced at once. Next 5 mL of ethyl acetate was added and 

stirred well. Ethyl acetate solution was used as the con -

trol, and the optical density (OD) value of the solution at 

485 nm wavelength was measured by spectrophoto meter 

(UH5300, HITACHI Co., Ltd., Japan) and the stan - dard 

curve was drawn. Root samples (0.5 g) of each treat ment 

were soaked in a 10 mL beaker with a mixture of 0.4% 

TTC and 66 mmol/L phosphate buffer (pH = 7.0), stored 

at 37 °C for 3 hours, and then 2 mL of 1 mol/L sul furic 

acid was added to ter minate the reaction. The roots were 

taken out and grinded with 2 mL ethyl acetate to extract 

methyl hy dra zine, and OD value at 485 nm was recorded 

using a spectro pho to meter (UH5300, HITACHI Co. LTD, 

Japan). The root activity was calculated accord ing to the 

standard curve. 

Plant growth parameters were assessed in full-bloom 

stage; plant height, diameter and the number of flowers 

were recorded. Plant dry weights (105 °C for 30 minutes 

and dried for 48 h at 80 °C) were determined in full-bloom 

stage. Leaf areas were obtained using Yaxin-1241 portable 

leaf area analyser (Beijing Yaxin Technology Co., Ltd., 

Beijing, China). 

The content of mineral elements in leaves and roots 

was measured as follows: dried leaf or root tissue was 
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ground, and 0.5 g of the milled powder was mineralized 

with H2SO4 to determine N using the regular Kjeldahl 

method (Kirk 1950). After grinding the dried tissue and 

passing it through a 1 mm sieve, 0.5 g of tissue was added 

into a digestive tube containing 10 mL HNO3 and 2 mL 

HCOl4, and then the samples were left undisturbed 

overnight. The next day, the solution was dissolved in the 

temperature control digestion instrument, and was grad -

ually heated to 170 °C to keep it boiling. One hour later, 

the lid was removed while heating was continued until 

1 mL of so lution was left. After the solution was slightly 

cooled down, 10 mL of deionized (DI) water was added 

in and heated to remove the acid. After boiling for five 

minutes, all the solution was transferred into a 25 mL 

volumetric flask, and the volume was topped up with DI 

water. Na, P, K, and Ca contents were then determined by 

inductively coupled plasma optical emission spectrometry 

(ICP-OES) (Optima 8000, PerkinElmer Instrument Co., 

Waltham, MA, USA) (Tabatabai 1997). 

For antioxidant enzyme extraction and assay fresh 

leaves and root samples were rinsed for five minutes in 

liquid nitrogen, and the frozen tissue samples were stored 

at –80 °C for further analyses. Enzymes were extracted 

from 1.0 g of tissue using a mortar and pestle with 5 mL 

of extraction buffer containing 50 mM potassium phos -

phate buffer (pH 7.6) and 0.1 mM Na-EDTA. The homo - 

genate was centrifuged at 15 000 rpm for 15 minutes. The 

supernatant was used for the enzyme assays. All proce -

dures to prepare the enzyme extracts were performed 

at 4 °C. The prepared enzyme extracts were used for the 

determination of superoxide dismutase (SOD), peroxidase 

(POD), catalase (CAT), ascorbate peroxidase (APX), and 

malondialdehyde (MDA) content as well as the soluble 

protein content. 

SOD activity was assayed using the nitro blue tetra -

zolium reduction method (Giannopolitis and Ries 1977). 

The enzyme solution (20 µL) mixed with 3 µL reaction 

solution (phosphoric acid buffer: methionine: tetrazolium 

blue: EDTA-Na2: riboflavin: water = 15: 3: 3: 3: 2.5) was 

kept under 4000 Lux light for 30 minutes, fol lowed by 

shading, and the OD value at 560 nm was measured. 

The reaction mixture (3 µL) contained 50 mL 0.1mol/L 

phosphoric acid buffer (pH 6.0), 28 µL guaiacol to dis -

solve completely, 19 µL of 30% H2O2 and 20 µL enzyme 

extract. POD activity was measured by recording the 

change of absorption values at 470 nm once every minute 

for three times (Chance and Maehly 1955). 

The activity was assayed for one minute in a reaction 

solution composed of 2.5 mL reaction solution (0.1 mol/L 

H2O2: 0.1 mol/L pH 7.0 phosphoric acid buffer = 1: 4) and 

0.1 mL enzyme extract. The change value of the absorb -

ance of CAT enzyme activity was determined as a de - 

crease in absorbance at 240 nm in one minute (Chance and  

Maehly 1955).  

The 1 mL reaction solution consisted of 1 mmol/L 

ascorbic acid, 2.5 mmol/L H2O2, 50 mmol/L NaH2PO4 

buffer (pH 7.0), and 0.1 mL enzyme extract and the change 

of absorption values was measured every 15 seconds within 

three minutes at 290 nm. The amount of ascorbic acid 

converted to protein per milligram per minute was calcu -

lated to indicate the activity of the APX enzyme (Eppley 

and Solorzano 1969; Nakano and Asada 1981). Osmotic 

regulatory substance and cell membrane per meability were 

assessed as follows: leaf soluble protein content was 

determined by the Coomassie Bright Blue G-250 method 

(Bradford 1976). The mixture of 20 µL enzyme solution 

and 3 mL of G-250 (0.1 g Coomassie brilliant blue G-250 

dissolved in 50 mL of 90% ethanol, added 100 mL 85% 

phosphoric acid, constant volume to 1000 mL, filtered) was 

left un disturbed for two minutes. Absorbance values at 595 

nm were measured to calculate the soluble protein content. 

Leaf MDA content was determined by the thiobar -

bituric acid reaction (Li 2000). One mL of enzyme so- 

lution and 2 mL of reaction solution (0.6 g thiobarbituric 

acid was dissolved in a small amount of 1 mol/L NaOH, 

and the volume was fixed to 100 mL with 10% tri chloro -

 acetic acid) were placed in a sealed tube and kept in a 

boiling water bath for 15 minutes. The tube was cooled 

down quickly after centrifugation. The supernatant was 

taken for measuring colorimetric values at 600 nm, 532 nm 

and 450 nm and the MDA contents were calculated. 

Electrolyte leakage was assessed as described by Lutts 

et al. (1996). Leaf samples were collected and washed 

three times with deionized water to eliminate any surface-

adhered electrolytes. The samples were placed in closed 

tubes containing 10 mL of deionized water and incubated 

at room temperature on a rotary shaker (100 rpm) for 

24 hours. Then the samples were autoclaved at 120 °C for 

20 minutes and the last electrical conductivity was ob -

tained after equilibration at 25 °C. 

Leaf proline content was determined by the method 

described by Bates et al. (1973). Approximately 1 g of 

leaves was weighed and homogenized in 2 mL of 3% 

sulfosalicylic acid solution. The homogenate was centri -

fuged at 13 000 rpm for 10 minutes and 1 mL of super- 

natant was placed in a test tube. Glacial acetic acid (1 mL) 

and acid ninhydrin (1 mL) were added to each tube, which 

were then closed and heated in a 100 °C water bath for 

one hour. After cooling the samples in an ice bath for 15 

min utes, 2 mL of toluene was added to each sample and 

mixed on a vortex for 20 seconds under a fume hood. The 

test tubes were left undisturbed for at least 10 minutes to 

allow for the separation of the toluene and aqueous 

phases. The toluene phase was carefully pipetted out 

into a glass test tube and the absorbance was measured 

at 520 nm, using pure toluene as a blank. The standard 

curve was prepared using proline in a 3% sulfosalicylic 

acid solution. 
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2.5. Data  analysis 
 
Microsoft Excel (Microsoft Inc., Redmond, WA, USA), 
DPS 7.5, OriginPro 2021 and SPSS 11.5 software (SPSS 
Inc., Chicago, IL, USA) were used for data processing, 
graphing, and statistical analysis. All data were ana lysed 
by two-way ANOVA (NaCl stress, inoculation with AM 
fungi, and their interactions). A p-value < 0.05 was con -
sidered significant. Data are presented as mean ± standard 
error. 
 
 
3. RESULTS 
 
3.1. AM  fungal  colonisation  status 
 
Two-factor ANOVA showed that AM fungi, salt and their 
interaction had significant effects on the mycorrhizal col -
onisation, spore numbers per 50 g pot media and hyphal 
density (p < 0.01, Table 1). No mycorrhizal colonisation 
was observed in the treatment group that did not receive 
AM fungi inoculation. At zero salt concentration, mycor -
rhizal colonisation percentage of the plants inoculated 
with F. mosseae, R. intraradices and F. mosseae combined 
with R. intraradices were as 35%, 34% and 51%, respec -
tively. As the salt concentration increased, mycorrhizal 
colonisation percentage, arbuscular colonisation, and hyphal 
density of the inoculated treatments decreased. Mycorrhizal 
colonisation of F. mosseae and R. intraradices double 
inoculation was superior to the other inoculation treat -
ments under most NaCl levels (Table 1). 
 
3.2. Effects  of  AM  fungi  and  salt  stress  on  root  traits 
       and  root  activity 
 
Two-factor ANOVA showed that AM fungi and salt sig -
nificantly influenced root tip numbers, root length, root 
surface area, root volume and root activity (p < 0.01), 
while their interactions were not significant (p > 0.05, 
Fig. 1). Salt stress significantly decreased the root tip 
numbers, root volume, root length, root surface area, and 
root activity, while inoculation with AM fungi reduced 
the adverse effects caused by salt stress, and the combined 
F. mosseae and R. intraradices treatment showed more 
profound effects on changing the root traits and root 
activities (Fig. 1). Under the same salt concentration con -
ditions, inoculation with both F. mosseae and R. intra - 
radices sig nificantly increased the number of tips, root 
length, root surface area and root volume compared with 
non-inoculation treatment (Fig. 1a–d). At the salt con -
centration of 0.6%, inoculation with F. mosseae and 
R. intraradices showed the greatest promotion in root 
activity, it increased by 89.5% compared with non-inocu -
lation treatment (Fig. 1e). 

3.3. Effects  of  AM  fungi  and  salt  stress  on  mineral 
       element  contents 
 
Two-factor ANOVA showed that AM fungi and salt sig -
nificantly affected the content of N, P, K, Ca, Na, and the 
ratio of N/Na, P/Na, K/Na, Ca/Na in the leaves and roots 
(p < 0.01, Figs 2–5). The interaction between salt and AM 
fungi was significant on the above element contents and 
element ratios except the N content in the leaves, and N 
and P content in the roots (Figs 2–5). Leaf and root N, P, 
K, and Ca contents, and the ratios of these elements to Na 
decreased, while Na increased with the increase of salt 
concentration. Inoculation treatments increased N, P, K, 
and Ca contents and the element ratios to a certain degree, 
but decreased Na compared to the non-inoculation treat -
ment regardless of salt concentrations. The combined 
F. mosseae and R. intraradices treatment produced the 
most beneficial effects on the leaves and roots (Figs 2–5). 
At 0.4% salt concentration, leaf Na content decreased 
significantly, and leaf N, P, K, and Ca contents increased 
significantly after inoculating with AM fungi (Fig. 2), and 
at zero salt concentration, the ratios of P/Na, K+/Na+ and 
Ca2+/Na+ increased significantly after inoculating with 
AM fungi. When the salt concentration was lower than 
0.4%, the ratio of each element to Na in leaves decreased 
significantly with the increase of the salt concentration 
(Fig. 3). With the increase of salt concentration, the root 
Na content increased significantly in the same inoculation 
treatment (Fig. 4). Under 0–0.6% salt concentration, N con -
tent increased significantly, while under 0–0.2 %, Ca in- 
creased significantly and at 0.6%, K increased signifi -
cantly in roots after inoculating with AM fungi (Fig. 4). 
When the salt concentration was lower than 0.4%, the 
ratio of each element to Na in roots decreased significantly 
with the increase of the salt concentration (Fig. 5). This 
result indicates that inoculation with AM fungi changed 
the absorption of nutrients and the nutrient contents under 
salt stress. 
 
3.4. Correlation  analysis  of  root  traits  and  leaf 
       element  contents  
 
Significant correlations were detected between root mor -
phological traits (root length, root tip numbers, root sur- 
face area, root volume) and root activity and nutrient 
elements in leaves (N, P, K, and Ca), and the ratio of each 
element to Na (N/Na, P/Na, K+/Na+, Ca2+/Na+), with the 
highest correlation coefficient (0.964) between root vol -
ume and K. A significant negative correlation was ob- 
served between root traits (root length, root tip numbers, 
root surface area, root volume, and root activity) and leaf 
Na content, with the highest negative correlation coef -
ficient (the absolute value of –0.95) between root surface 
area and Na (Table 2). 
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3.5. Effects  of  AM  fungi  and  salt  stress  on  the  leaf 
       and  root  antioxidant  enzyme  activities 
 
Two-factor ANOVA showed that AM fungi, salt and their 
interactions significantly affected the activities of SOD, 
CAT, POD, and APX in both leaves and roots (p < 0.01, 
Tables 3 and 4). The activities of SOD, CAT, POD, and 
APX increased significantly in T. erecta leaves and roots 
as the salt concentration increased. Inoculation with AM 

fungi significantly increased the abovementioned enzyme 
activities in leaves under the same salt level compared 
to the no inoculation, except SOD in the treatment inocu -
lated with R. intraradices without added salt (Table 3). 
When the salt concentration was higher than 0.6%, the 
activities of SOD, POD and APX in roots were sig -
nificantly increased by the inoculation (Table 4). The com- 
bined F. mosseae and R. intraradices treatment produced 
the most effects (Tables 3 and 4). 
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Table 1. Effect of AM fungi and salt on mycorrhizal colonisation, hyphal density and spore density 

                  Treatments  
   Mycorrhizal 
colonisation (%) 

 
Spore numbers per 
   50 g pot media 

 
Hyphal density  
�P�J±1 pot media) 

AM fungi Salt concentration  
           (%) 

̢ 

           0           0              0                0 

           0.2           0              0                0 

           0.4           0              0                0 

           0.6           0              0                0 

           0.8           0              0                0 

Funneliformis 
mosseae 

           0      35 ± 0.5b      23.7 ± 0.7b        1.30 ± 0.03ab 

           0.2      31 ± 0.6c      21.0 ± 0.6cde        1.11 ± 0.06c 

           0.4      28 ± 0.6d      20.3 ± 0.3cde        0.98 ± 0.02d 

           0.6      26 ± 0.4e      19.3 ± 0.7def        0.83 ± 0.04e 

           0.8      23 ± 0.3fg      17.0 ± 1.0fghi        0.62 ± 0.04fg 

Rhizophagus 
intraradices 

           0      34 ± 0.4b      22.7 ± 0.9bc        1.21 ± 0.06bc 

           0.2      34 ± 0.7b      17.3 ± 1.2fgh        0.86 ± 0.05de 

           0.4      28 ± 0.9d      20.7 ± 1.2cde        0.71 ± 0.06f 

           0.6      23 ± 0.5fg      15.3 ± 0.3hi        0.69 ± 0.03f 

           0.8      22 ± 0.8g      14.7 ± 0.9i        0.56 ± 0.04g 

F. mosseae +  
R. intraradices 
 

           0      51 ± 0.4a      29.3 ± 1.8a        1.40 ± 0.06a 

           0.2      35 ± 0.5b      28.3 ± 1.7a        1.28 ± 0.04b 

           0.4      31 ± 0.7c      21.7 ± 0.9bcd        1.29 ± 0.02ab 

           0.6      30 ± 0.9c      18.7 ± 0.9efg        1.21 ± 0.06bc 

           0.8      24 ± 0.4ef      16.3 ± 0.9ghi        0.85 ± 0.04e 

                                            Significance Testing (F-Measure): 
AM fungi      157.321**      714.792**        884.588** 
Salt concentration      380.600**        39.493**          76.917** 
AM fungi*Salt concentration        38.456**          9.400**          11.901** 

   Mycorrhizal 
colonisation (%) 

Spore numbers per 
   50 g pot media 

Hyphal density  
�P�J±1 pot media) 

 
According to Tukey’s post hoc test, different letters indicate significant differences at the 0.05 level and same 
letters within each column indicate no significant difference (p ≤ 0.05) between treatments. “–” means no 
inoculation; * and ** indicate significant differences at 0.01 ≤ p < 0.05 and p < 0.01, respectively; and NS indicates 
no significant difference, p > 0.05. Values presented are the mean ± standard error of three replicates. 

.



3.6. Effects  of  AM  fungi  and  salt  stress  on  leaf 
       osmotic  regulatory  substances  and  cell   
       membrane  permeability 
 
Two-factor ANOVA showed that AM fungi and salt had 
significant effects on soluble protein, proline, relative 
conductivity and MDA contents in leaves (p < 0.01, 
Table 5). The interaction between AM fungi and salt had 
a significant effect on proline (p < 0.01) and relative con -

ductivity (0.01 ≤ p < 0.05) while there was no significant 
effect on soluble protein and MDA contents (p > 0.05) in 
leaves (Table 5). Soluble protein content decreased 
with the rising salt level, while proline, MDA contents, 
and leaf relative electrical conductivity increased. Inocu -
lation with AM fungi raised the soluble protein and 
proline contents but lowered relative electrical conduc -
tivity and MDA contents to different degrees at the same 
salt level compared to non-inoculation treatment. The com -
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Fig. 1. Root traits [root tip numbers (a), root length (b), root surface area (c), root volume (d)] and root activity (e) of Tagetes erecta 
under different levels of salinity (0, 0.2%, 0.4%, 0.6% and 0.8%) in response to different inoculation treatments. “–” means no inoculation, 
Fm, Ri, and Fm + Ri, respectively signify Funneliformis mosseae, Rhizophagus intraradices, and Funneliformis mosseae and 
Rhizophagus intraradices combined. Letters indicate significant differences (p < 0.05) according to Tukey’s post hoc test and the error 
bars represent the standard error (SE). * and ** indicate significant differences at 0.01< p < 0.05 and p < 0.01, respectively, and NS 
indicates no significant difference, p > 0.05. 
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bined F. mosseae and R. intraradices treatment produced 
the greatest beneficial effects (Table 5). 
 
3.7. Effects  of  AM  fungi  and  salt  stress  on  plant 
       growth  and  flowering 
 
AM fungal inoculation treatments resulted in different 
effects on plant growth and flower diameter both with and 
without adding salt. Two-factor ANOVA showed that AM 

fungi and salt significantly affected shoot dry weight, root 
dry weight, and single leaf area (p < 0.01, Table 6), while 
their interactions significantly affected only single leaf 
area (0.01 ≤ p < 0.05) (Table 6). F. mosseae and R. intra -
radices combined treatment produced more profound 
effects in plant growth and flower diameter among all 
inoculation treatments (Table 6). As the salt concentration 
increased (0–0.8%), the growth of T. erecta showed a 
decreasing trend for every inoculation treatment. Compared 
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Fig. 2. Element contents [N (a), P (b), K (c), Ca (d), Na (e)] in the leaves of Tagetes erecta under different levels of salinity (0, 0.2%, 
0.4%, 0.6% and 0.8%) in response to different inoculation treatments. “–” means no inoculation, Fm, Ri, and Fm + Ri, respectively sig -
nify Funneliformis mosseae, Rhizophagus intraradices, and Funneliformis mosseae and Rhizophagus intraradices combined. Letters 
indicate significant differences (p < 0.05) according to Tukey’s post hoc test and the error bars represent the standard error (SE). * and 
** indicate significant differences at 0.01< p < 0.05 and p < 0.01, respectively, and NS indicates no significant difference, p > 0.05. 
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Fig. 3. Elemental ratio [N/Na (a), P/Na (b), K/Na (c), Ca/Na (d)] in the leaves of Tagetes erecta under different levels of salinity 
(0, 0.2%, 0.4%, 0.6% and 0.8%) in response to different inoculation treatments. “–” means no inoculation, Fm, Ri, and Fm + Ri, 
respectively signify Funneliformis mosseae, Rhizophagus intraradices, and Funneliformis mosseae and Rhizophagus intraradices 
combined. Letters indicate significant differences (p < 0.05) according to Tukey’s post hoc test and the error bars represent the 
standard error (SE). * and ** indicate significant differences at 0.01 < p < 0.05 and p < 0.01, respectively, and NS indicates no 
significant difference, p > 0.05.

Root architecture Na N P K Ca N/Na P/Na K/Na Ca/Na 

Root surface area ±0.950** 0.823** 0.877** 0.963** 0.893** 0.852** 0.824** 0.825** 0.823** 

Root volume ±0.943** 0.807** 0.870** 0.964** 0.898** 0.804** 0.773** 0.778** 0.787** 

Root length ±0.917** 0.816** 0.858** 0.952** 0.923** 0.717** 0.681** 0.685** 0.696** 

Tip numbers ±0.932** 0.837** 0.879** 0.953** 0.898** 0.814** 0.772** 0.772** 0.775** 

Root activity ±0.905** 0.771** 0.834** 0.913** 0.828** 0.800** 0.778** 0.780** 0.780** 

Table 2. Correlation of root architecture (root surface area, root volume, root length, root tip numbers) and root activity with leaf 
element contents and element ratios  
 
 

 
 According to Tukey’s post hoc test, ** the correlation was significant at the level of 0.01 (double-tailed). 

(a) (b)

(c) (d)

–
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Fig. 4. Element contents [N (a), P (b), K (c), Ca (d), Na (e)] in the roots of Tagetes erecta under different levels of salinity (0, 0.2%, 
0.4%, 0.6% and 0.8%) in response to different inoculation treatments. “–” means no inoculation, Fm, Ri, and Fm + Ri, 
respectively signify Funneliformis mosseae, Rhizophagus intraradices, and Funneliformis mosseae and Rhizophagus 
intraradices combined. Letters indicate significant differences (p < 0.05) according to Tukey’s post hoc test and the error bars 
represent the standard error (SE). * and ** indicate significant differences at 0.01 < p < 0.05 and p < 0.01, respectively, and NS 
indicates no significant difference, p > 0.05. 
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with the non-inoculated plants, shoot dry biomass and 
single leaf area of inoculated plants was significantly 
higher under all salt treatments; and at the 0.6% salt 
concentration, so was plant height and root dry biomass. 
Under no salt addition conditions, plant height, shoot dry 
weight, root dry biomass and single leaf area of T. erecta 
inoculated with both F. mosseae and R. intra radices were 
higher than that with the single AM fungus inoculation. 
Under 0.4% salt concentration, plant height, root dry 
biomass and single leaf area increased significantly with 
F. mosseae and R. intraradices combined inoculation 
com pared to only R. intraradices inoculation treatment 
(Table 6). 
 
 
4. DISCUSSION 
 
This study showed that salt stress inhibited AM fungal 
colonisation; however, the influence of salt stress on AM 
fungus colonisation under dual inoculation was lesser than 
that under single inoculation. It has been demonstrated 

previously that AM fungi improve stress tolerance and 
growth, regulate morphological structure and improve the 
absorption of water and mineral nutrients in plants 
(Begum et al. 2019; Adeyemi et al. 2021). 

The effectiveness of AM symbiosis in promoting plant 
growth and salt tolerance depends on host plants, AM 
fungal species and soil environmental conditions (Estrada 
et al. 2013; Pellegrino and Bedini 2014; Garg and Pandey 
2015). On the whole, our experiment demonstrated more 
beneficial effects for F. mosseae than R. intraradices, and 
the dual inoculation with both F. mosseae and R. intraradices 
even further improved salt stress resistance of host plant 
T. erecta. At zero salt concentration, this dual inoculation 
performed better in promoting plant growth than the single 
species, while only at 0.4% salt concentration, F. mosseae 
and R. intraradices combined treatment showed a greater 
effect of enhancing plant growth and salt re sistance com -
pared with R. intraradices. So it is evident that F. mosseae 
should play a key role in the inoculation. In addition, the 
type of mixed species also plays a role in plant reaction. 
The ultimate effect of AM symbiosis on reducing salt 
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Fig. 5. Elemental ratio [N/Na (a), P/Na (b), K/Na (c), Ca/Na (d)] in the roots of Tagetes erecta under different levels of salinity 
(0, 0.2%, 0.4%, 0.6% and 0.8%) in response to different inoculation treatments. “–” means no inoculation, Fm, Ri, and Fm + Ri, 
respectively signify Funneliformis mosseae, Rhizophagus intraradices, and Funneliformis mosseae and Rhizophagus intraradices 
combined. Letters indicate significant differences (p < 0.05) according to Tukey’s post hoc test and the error bars represent the 
standard error (SE). * and ** indicate significant differences at 0.01 < p < 0.05 and p < 0.01, respectively, and NS indicates no 
significant difference, p > 0.05. 
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stress depends on the combination of inocula and plant 
species (Al-Karaki and Williams 2021). Thus, more com -
binations with various species need to be tested to find the 
most effective combinations.  

Plants usually modify their root structure under salt 
stress to regulate the absorption of Na+ by roots and 
enhance salt tolerance (Lata et al. 2019). AM fungi form 
arbuscule and mycelia in plant roots and rhizosphere, and 
the mycelium network of plant roots significantly en -
hances the ability of roots to enter the soil and increases 
the contact between roots and surrounding soil, thus 

promoting the absorption of water and mineral nutrients 
and therefore also plant growth (Bowles et al. 2016; 
Huang et al. 2020). Many experiments have shown that 
colonisation by AM fungi increases root length, root sur -
face area, root tip numbers and root volume, improves 
absorption of mineral nutrients, and increases the utiliza -
tion efficiency of nutrient elements (Abbaspour et al. 2021; 
Nacoon et al. 2021). Wang, J. et al. (2020) reported that 
salt tolerance in maize was positively correlated with 
taproot depth, but negatively correlated with Na+ content 
in shoots. The present study showed that salt stress in -
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Table 3. Effect of AM fungi and salt on superoxide dismutase (SOD), catalase (CAT), peroxidase (POD), and 
ascorbate peroxidase (APX) activity in leaves 

   Treatments       SOD 

(U·min±1·g ±1) 

      CAT 

(U·g±1·min±1) 

       POD 

(U·g ±1·min±1) 

      APX 

(U·g ±1·min±1) AM fungi Salt (%) 

± 

    0 30.1 ± 0.9m 15.3 ± 0.7m 33.0 ± 0.6o   78.5 ± 4.1m 

    0.2 33.1 ± 0.3kl 21.3 ± 0.5l 42.2 ± 0.6l   95.2 ± 0.8k 

    0.4 35.8 ± 0.7ij 27.0 ± 1.2ij 52.5 ± 0.3i 113.8 ± 3.1i 

    0.6 39.5 ± 0.3h 30.7 ± 0.5gh 56.6 ± 1.0h 129.7 ± 1.9g 

    0.8 43.0 ± 0.3efg 36.0 ± 0.3d 69.6 ± 0.6de 153.0 ± 1.7e 

Funneliformis 
mosseae 

    0 32.8 ± 0.7l 23.7 ± 0.7k 38.4 ± 0.6m   91.7 ± 1.2kl 

    0.2 37.7 ± 1.3hi 27.4 ± 0.4ij 46.9 ± 0.6j 115.3 ± 3.8i 

    0.4 42.0 ± 0.8g 32.3 ± 0.5fg 57.3 ± 0.7h 155.3 ± 0.3e 

    0.6 45.3 ± 0.4d 34.3 ± 0.6def 68.2 ± 0.6e 189.0 ± 1.2b 

    0.8 50.1 ± 0.7bc 39.4 ± 0.6c 80.3 ± 0.5b 183.3 ± 1.8c 

Rhizophagus 
intraradices 

    0 29.5 ± 1.3m 21.3 ± 0.5l 36.3 ± 0.8n   87.9 ± 1.1l 

    0.2 35.7 ± 0.2ij 25.4 ± 0.4jk 44.9 ± 0.7k 123.0 ± 1.5h 

    0.4 42.7 ± 0.5efg 30.9 ± 0.2gh 61.5 ± 0.8g 134.3 ± 0.3fg 

    0.6 44.6 ± 0.6de 33.7 ± 0.4ef 64.5 ± 0.6f 156.7 ± 1.8de 

    0.8 49.2 ± 0.6c 43.8 ± 2.7b 74.9 ± 1.0c 181.3 ± 1.8c 

F. mosseae +  
R. intraradices 

    0 35.1 ± 0.8jk 24.3 ± 0.6k 41.8 ± 0.7l 106.0 ± 2.2j 

    0.2 42.4 ± 0.7fg 28.7 ± 0.2hi 52.4 ± 0.8i 137.3 ± 1.5f 

    0.4 44.3 ± 0.6def 32.8 ± 0.2fg 62.4 ± 1.2g 161.3 ± 2.7d 

    0.6 52.0 ± 1.1ab 35.3 ± 0.8de 70.3 ± 0.5d 194.3 ± 0.9a 

    0.8 53.8 ± 1.3a 47.6 ± 0.5a 85.2 ± 0.3a 196.7 ± 1.8a 

Significance Testing (F-Measure) 

AM fungi 120.741**   77.566**   238.225**   444.384** 

Salt 302.205** 366.651** 1997.800** 1247.066** 

AM fungi*salt     4.272**     4.289**       9.348**     19.749** 

According to Tukey’s post hoc test, different letters indicate significant differences at the 0.05 level and same 
letters within each column indicate no significant difference (p ≤ 0.05) between treatments. “–” means no 
inoculation; * and ** indicate significant differences at 0.01 ≤ p < 0.05 and p < 0.01, respectively; and NS 
indicates no significant difference, p > 0.05. Values presented are the mean ± standard error of three replicates.  



hibited the development and elongation of T. erecta 
roots, hindered the development of the root system, and 
deteriorated the root morphological traits, which was not 
beneficial for enhancing salt tolerance and absoption of 
mineral nu trients. The AM fungi inhibited Na+ absorption 
and in- creased K+ absorption by increasing total root 
length and root tip number, root surface area, and root 
activities, so K+/Na+ tended to be balanced, which in -
creases the active root absorption area to respond to the 
salt stress (Guo et al. 2017). 

The accumulation of harmful salt ions in soil affects 
the uptake of mineral nutrients by plants (Loudari et al. 
2020). Excess Na+ in soil inhibits the acquisition of other 
nutrients by disrupting various transporters in the root 
plasma membrane (e.g., K-selective ion channels), and 
competes with K+ for binding sites necessary for various 
cellular functions (Hajiboland 2013). Inoculation with AM 
fungi reduced the absorption and accumulation of Na+ in 
T. erecta roots under salt stress and promoted the transport 
of Na+ to shoots; thus, reducing osmotic stress on the roots 

Proceedings of the Estonian Academy of Sciences, 2022, 71, 4, 376–396388

Table 4. Effect of AM fungi and salt on superoxide dismutase (SOD), catalase (CAT), peroxidase 
(POD), and ascorbate peroxidase (APX) activity in roots  

                   Treatments       SOD 

(U·min±1·g ±1) 

      CAT 

(U·g ±1·min±1) 

      POD 

(U·g ±1·min±1) 

      APX 

(U·g ±1·min±1) AM fungi Salt (%) 

± 

      0 40.4 ± 0.6n    22 ± 0.7l 41.4 ± 0.5k   93.3 ± 0.8m 

      0.2 41.3 ± 0.2mn 27.9 ± 0.5jk 49.8 ± 0.8j 107.8 ± 0.8kl 

      0.4 43.5 ± 0.7klm 33.2 ± 0.9hi 55.5 ± 0.5gh 123.4 ± 1.2j 

      0.6 46.7 ± 0.2hij 36.7 ± 0.7efgh 59.8 ± 0.8f 133.8 ± 1.8i 

      0.8 48.4 ± 0.7hi 41.7 ± 0.7cd 70.1 ± 0.4de 159.8 ± 0.8g 

Funneliformis 
mosseae 

      0 42.5 ± 0.6lmn 25.4 ± 0.5jkl 49.2 ± 0.7j 112.9 ± 0.5k 

      0.2    45 ± 0.4jkl 29.6 ± 0.5ij 50.3 ± 0.5j 137.4 ± 0.6i 

      0.4 49.6 ± 0.4fgh 34.3 ± 1.2hi 58.2 ± 0.5fg 166.5 ± 0.4f 

      0.6 51.4 ± 0.4efg 39.6 ± 1.2defg 72.7 ± 0.5cd 193.1 ± 1.7c 

      0.8 55.6 ± 0.4cd 45.8 ± 0.6bc 88.4 ± 0.6a 197.6 ± 1.2c 

Rhizophagus 
intraradices 

      0 41.5 ± 0.6mn 23.7 ± 0.7kl 48.4 ± 0.6j 106.3 ± 0.8l 

      0.2 42.6 ± 0.6lmn 27.5 ± 0.5jk 50.5 ± 0.5ij 144.4 ± 1.3h 

      0.4 51.5 ± 1.0ef 35.3 ± 0.5gh 67.6 ± 0.5e 168.3 ± 0.8ef 

      0.6 53.8 ± 0.2de 40.5 ± 0.2def 70.9 ± 0.9d 173.5 ± 1.8e 

      0.8 59.5 ± 0.5b 46.6 ± 0.2b 83.1 ± 0.8b 192.5 ± 1.8c 

F. mosseae +  
R. intraradices 

      0    46 ± 0.6ijk 27.4 ± 0.9jk 53.6 ± 0.6hi 124.5 ± 0.5j 

      0.2 48.5 ± 0.7ghi 36.5 ± 0.9fgh 59.6 ± 1.0f 157.6 ± 1.2g 

      0.4 55.4 ± 0.6cd 41.3 ± 1.8cde 67.7 ± 0.5e 183.7 ± 1.1d 

      0.6 57.6 ± 0.2bc 42.5 ± 1.2bcd 75.3 ± 0.6c 208.6 ± 1.2b 

      0.8 62.6 ± 0.6a 52.6 ± 1.4a 90.4 ± 0.6a 224.5 ± 1.2a 

Significance Testing (F-Measure) 

AM fungi 283.713**   68.225**   397.624** 2000.213** 

Salt 447.061** 369.550** 1840.334** 3243.047** 

AM fungi*salt   13.151**     2.785**     29.660**     53.689** 

According to Tukey’s post hoc test, different letters indicate significant differences at the 0.05 level 
and same letters within each column indicate no significant difference (p ≤ 0.05) between treatments. 
“–” means no inoculation; * and ** indicate significant differences at 0.01 ≤ p < 0.05 and p < 0.01, 
respectively; and NS indicates no significant difference, p > 0.05. Values presented are the mean ± 
standard error of three replicates. 



(Parihar et al. 2020). The absolute content and distribu -
tion pattern of key mineral elements plays an im portant 
role in plant salt tolerance. Additionally, the relative 
ratios of key mineral nutrients to Na+, such as the K+/Na+ 
and Ca2+/Na+ ratios, better reflect the nutrient balance, 
physiological metabolism, and health status of plants. In 
general, under salt stress, the accumulation of harmful 
salt ions (Na+) leads to element absorption deficiency, 
and low nutrient uptake and utilization are the major fac -
tors caus ing stunted growth. A low K+/Na+ ratio causes 

dehy dra tion, membrane dysfunction, and ion toxicity 
in cells. Therefore, plants must maintain a high cyto -
plasmic K+/Na+ ratio under salt stress, which is es - 
sential for maintaining normal cell function, growth, and 
devel opment (Zhao et al. 2020). The external hyphae of 
AM fungi are important for increasing the absorption of 
soil mineral cations (K+, Ca2+, Mg2+ and Fe3+) (Alves et 
al. 2021). The difference in AM fungal mycelium length 
is the main driving force for nutrient absorption, and the 
external mycelia of AM fungi can obtain nutrients over 
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Table 5. Effects of AM fungi and salt on leaf soluble protein, proline, relative conductivity, and malondialdehyde 
(MDA)  

               Treatments 
Soluble protein 

(mg·g±1 FW) 
Proline 

(mg·g±1 FW) 
Relative 

conductivity (%) 
MDA 

(mg·g±1 FW) AM fungi  Salt (%) 

± 

0     13.3 ± 0.7bc    11.6 ± 1.0k      15 ± 0.8cdef  10.5 ± 1.2ghi 

0.2     10.1 ± 1.4d    15.0 ± 0.4j      16 ± 1.6cd  14.5 ± 1.1ef 

0.4       9.8 ± 0.8de    23.7 ± 0.3g      17 ± 0.7c  18.2 ± 0.5bc 

0.6       5.5 ± 0.8g    26.9 ± 0.4e      23 ± 1.0b  20.6 ± 1.0b 

0.8       5.3 ± 0.8g    30.0 ± 0.5d      27 ± 0.7a  25.3 ± 1.2a 

Funneliformis 

mosseae 

0     15.3 ± 1.2ab    20.3 ± 0.6h        9 ± 0.9h    9.6 ± 0.8hij 

0.2     13.7 ± 0.6bc    20.8 ± 0.3h      13 ± 0.9fg  10.6 ± 0.6ghi 

0.4     10.4 ± 0.6d    26.4 ± 0.5e      15 ± 0.5def  15.3 ± 1.2def 

0.6       9.3 ± 0.7de    32.3 ± 0.6c      18 ± 1.9c  17.7 ± 0.7cd 

0.8       7.6 ± 0.4efg    36.7 ± 0.4ab      21 ± 0.5b  20.5 ± 1.2b 

Rhizophagus 
intraradices 

0     14.5 ± 0.6ab    17.2 ± 0.3i      11 ± 1.0gh  11.5 ± 1.0gh 

0.2     11.5 ± 1.0cd    20.4 ± 0.6h      11 ± 1.2gh  13.1 ± 0.9fg 

0.4       9.7 ± 0.8de    25.0 ± 0.4fg      16 ± 0.8cde  16.3 ± 0.6cde 

0.6       9.5 ± 0.8de    30.3 ± 0.6d      22 ± 0.7b  18.6 ± 0.9bc 

0.8       6.8 ± 0.4fg    35.6 ± 0.3b      24 ± 0.4ab  24.4 ± 1.1a 

F. mosseae +  

R. intraradices 

0     16.4 ± 1.1a    21.3 ± 0.6h        9 ± 0.6h    7.7 ± 0.8j 

0.2     14.4 ± 1.2ab    25.5 ± 0.4ef      10 ± 0.8h    8.0 ± 0.6ij 

0.4     13.3 ± 0.7bc    28.9 ± 0.6d      14 ± 0.5ef  10.6 ± 1.0ghi 

0.6     10.8 ± 0.6d    32.6 ± 0.4c      15 ± 1.0def  12.8 ± 0.6fg 

0.8       9.2 ± 1.2def    37.2 ± 0.3a      16 ± 0.6cde  15.3 ± 1.2def 

Significance Testing (F-Measure) 

AM fungi 19.066** 217.812**   53.550** 52.454** 

Salt 49.048** 811.612** 100.732** 94.190** 

AM fungi*salt 0.756NS     6.664**   3.220* 1.698NS 
 
According to Tukey’s post hoc test, different letters indicate significant differences at the 0.05 level and same 
letters within each column indicate no significant difference (p ≤ 0.05) between treatments. “–” means no 
inoculation; * and ** indicate significant differences at 0.01 ≤ p < 0.05 and p < 0.01, respectively; and NS 
indicates no significant difference, p > 0.05. Values presented are the mean ± standard error of three replicates.  

Treatments 

           AM fungi         Salt (%)



long distance and in narrow soil pores (Ortaş et al. 2019). 
In addition, AM fungal colonisation can enhance soil 
aggregation through external hyphae to filter soil water 
and nutrients, and some AM fungi can also secrete a var -
iety of compounds to improve root colonisation and spore 
number of AM fungi, therefore further promoting the 
acquisition of soil nutrients by roots (Jiang et al. 2020; 
Moitinho et al. 2020). AM fungi promoted the absorption 
of N, P, K, and Ca in leaves, decreased the accumulation 
of Na+, and increased the ratios of K+/Na+, Ca2+/Na+, 

P/Na, and N/Na under salt stress, and thus alleviated salt 
stress in T. erecta. This may be related to the increase of 
K+ uptake due to up-regulation of the K+ transporter in 
roots by AM fungi, while there is a competitive rela -
tionship between K+ and Na+ uptake (Fall et al. 2017). AM 
fungi limit the absorption and accumulation of Na+ by 
regulating the expression levels of the AKT2, SOS1, and 
SKOR genes which regulate K+ or Na+ absorption and 
transport in the roots of host plants to maintain K+ and 
Na+ homeostasis (Estrada et al. 2013). Furthermore, Ca2+ 
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Table 6. Effect of AM fungi and salt on plant height, shoot dry weight, root dry weight, single leaf area and flower diameter 
 
 

Plant height 
(cm) 

Shoot dry 
weight (g) 

Root dry weight 
(g) 

Single leaf 
area (mm2) 

Flower diameter 
(cm) 

AM fungi Salt 
(%) 
 

± 

0 39.5 ± 2.2bc 1.24 ± 0.07efg 0.6 ± 0.02c 686.6 ± 4.2c 5.8 ± 0.09abc 

0.2 36.5 ± 1.1defg 1.12 ± 0.02hi 0.5 ± 0.02defg 607.0 ± 2.9h 5.7 ± 0.03abc 

0.4 32.6 ± 0.2ij 0.94 ± 0.01jk 0.4 ± 0.01hijk 606.6 ± 3.5h 5.5 ± 0.03bcde 

0.6 30.2 ± 1.2j 0.87 ± 0.03k 0.3 ± 0.01m 508.5 ± 4.1l 4.3 ± 0.09gh 

0.8 30.0 ± 1.2j 0.75 ± 0.03l 0.2 ± 0.01n 428.8 ± 1.5o 3.4 ± 0.07h 

Funneliformis 
mosseae 

0 40.3 ± 1.1bc 1.40 ± 0.09cd 0.7 ± 0.03b 717.5 ± 3.5b 5.8 ± 0.07abc 

0.2 38.2 ± 1.1cd 1.35 ± 0.05de 0.5 ± 0.02d 668.6 ± 2.3d 5.8 ± 0.12abc 

0.4 35.2 ± 0.6fghi 1.25 ± 0.03efg 0.5 ± 0.01efgh 648.8 ± 3.9fg 5.2 ± 0.12cdef 

0.6 35.4 ± 0.6defgh 1.23 ± 0.07fgh 0.4 ± 0.01ijk 538.7 ± 4.2j 4.5 ± 0.39fg 

0.8 33.5 ± 0.8hi 1.06 ± 0.04ij 0.4 ± 0.01lm 459.9 ± 2.5n 4.1 ± 0.09gh 

Rhizophagus 

intraradices 

0 41.0 ± 0.6b 1.47 ± 0.02bc 0.6 ± 0.06c 711.7 ± 2.1b 6.1 ± 0.03abc 

0.2 38.0 ± 1.1cde 1.32 ± 0.03def 0.5 ± 0.01def 657.5 ± 3.1ef 5.9 ± 0.03abc 

0.4 33.4 ± 0.6hi 1.21 ± 0.03fgh 0.5 ± 0.02ghij 641.5 ± 3.8g 5.3 ± 0.17bcdef 

0.6 34.2 ± 0.6ghi 1.17 ± 0.02gh 0.4 ± 0.01jkl 527.7 ± 3.6k 4.6 ± 0.19efg 

0.8 32.5 ± 1.4ij 0.95 ± 0.03jk 0.3 ± 0.01m 488.7 ± 1.8m 4.2 ± 0.09gh 

F. mosseae +  
R. intraradices 

0 45.3 ± 0.5a 1.71 ± 0.04a 0.8 ± 0.02a 785.6 ± 3.0a 6.4 ± 0.07a 

0.2 40.1 ± 0.6bc 1.52 ± 0.04b 0.6 ± 0.02c 663.5 ± 3.7de 6.2 ± 0.09ab 

0.4 37.7 ± 0.5cdef 1.30 ± 0.02def 0.5 ± 0.01de 657.5 ± 3.1ef 5.6 ± 0.12abcd 

0.6 35.4 ± 0.6efgh 1.25 ± 0.03efg 0.5 ± 0.01fghi 594.8 ± 2.9i 4.8 ± 0.42defg 

0.8 34.5 ± 0.8ghi 1.16 ± 0.03ghi 0.4 ± 0.01klm 515.3 ± 2.8l 4.7 ± 0.36efg 

Significance Testing (F-Measure) 

AM fungi 21.558** 94.332**   38.131**   457.999** 10.463** 

Salt 56.886** 94.831** 180.224** 3713.933** 91.601** 

AM fungi*salt   1.060NS   0.929NS     1.023NS     25.522**   1.178NS 
 
According to Tukey’s post hoc test, different letters indicate significant differences at the 0.05 level and same letters within 
each column indicate no significant difference (p ≤ 0.05) between treatments. “–” means no inoculation;* and ** indicate 
significant differences at 0.01 ≤ p < 0.05 and p < 0.01, respectively; and NS indicates no significant difference, p > 0.05. 
Values presented are the mean ± standard error of three replicates.  

Treatments 

           AM fungi       Salt (%)

Plant height 
(cm) 

Shoot dry 
weight (g) 

Root dry weight 
(g) 

Single leaf 
area (mm2) 

Flower diameter 
(cm) 



is an important cellular messenger of growth signals (Zhu 
et al. 2013). The accumulation of Ca2+ facilitates colon -
isation of AM fungi, resulting in better plant growth 
(Abbaspour et al. 2021). The present results showed that 
salt stress reduced the uptake and utilization of N, P, K 
and Ca in T. erecta, while inoculation with AM fungi 
improved the uptake and utilization of Ca and P. The pos -
sible reason for this could be that AM fungi regulate the 
expression of K+/Na+ transporter, and H+ pump, creat ing 
conditions for transporting P and Ca and reducing Na+ 
and Cl– content, which are harmful to plant growth 
(Theerawitaya et al. 2020). 

Plants under salt stress are often affected by Na+ 
toxicity, osmotic stress, nutrient deficiency, and other 
factors resulting in poor growth (Yasmeen et al. 2019). 
Excessive Na+ disrupts the internal balance of cells, 
resulting in degradation of proteins and damage to cell 
membranes, which affects the metabolic processes in cells 
(Hasanuzzaman et al. 2013). K+ in plant cells is used not 
only to stabilize the pH level in the cytoplasm, but also to 
increase osmotic potential in vacuoles, which prevents cell 
membrane damage (Marschner 2012). In this study, 
inoculation with AM fungi inhibited the accumulation of 
Na+, promoted the uptake of K+, maintained a higher 
K+/Na+ ratio, prevented the destruction of the metabolic 
pro cess and inhibited MDA synthesis. Therefore, selective 
ion absorption seems to be the main mechanism regulating 
plant cell permeability in AM plants (Hajiboland 2013). 
The cell membrane system is further damaged from the 
excessive accumulation of reactive oxygen species (O2–) 
and superoxide radicals (OH–) under salt stress (Nahar et 
al. 2016; Tiwari et al. 2016). However, the accumulation 
of hydrogen peroxide under salt stress was significantly 
reduced in plants inoculated with AM fungi, and the lipid 
oxidative damage in branches and roots was also low 
(Hajiboland et al. 2010; Abbaspour et al. 2021). AM 
fungal colonisation hinders the accumulation of ROS, and 
thus reduces lipid oxidative damage (Estrada et al. 2013; 
Bompadre et al. 2014). In the present study, we found that 
inoculation with AM fungi significantly promoted the 
activity of antioxidant enzymes under salt stress compared 
to non-inoculation treatment. Plants mitigate salt stress by 
producing nitric oxide (NO) and other compounds that 
counter the formation of ROS (Gupta et al. 2021). NO 
directly or indirectly triggers the expression of several 
redox-regulated genes, and helps activate many anti -
oxidant enzymes, including CAT, APX, glutathione re- 
ductase, and SOD (Gupta et al. 2021) to maintain normal 
physiological and metabolic levels in plants (Liu et al. 
2019; Santander et al. 2020; Qian et al. 2021). The in -
creased accumulation of osmotic regulatory substances 
such as proline and soluble protein by AM fungi can 
maintain the normal metabolism of plants. Studies have 
shown that salt stress can lead to inhibition of plant protein 

synthesis or protein degradation, but inoculation with AM 
fungi can increase soluble protein content, maintain cell 
osmotic balance, and alleviate the damage of salt stress 
on plants (Medeiros et al. 2015; Islam et al. 2021). Soluble 
protein can be reused as nitrogen after stress and can be 
converted into free amino acids to help maintain physio -
logical functions of plants under severe stress (Monreal et 
al. 2007; Abid et al. 2018; Islam et al. 2021). 

The present experiment showed that the AM fungal 
inoculation, particularly with the combination of F. mosseae 
and R. intraradices, strongly enhanced the osmotic regula -
tory mechanisms, improved the activity of antioxidant 
enzymes, reduced membrane lipid peroxidation, and thus 
reduced salt stress damage and improved plant growth and 
salt tolerance. Further studies are required to investigate 
their regulating gene expression underpinning the mol -
ecular mechanism of increasing salt tolerance by AM 
symbiosis. 
 
 
5. CONCLUSIONS 
 
This study revealed the important role of AM fungi in 
alleviating salt stress in T. erecta plants through altering 
root morphological traits, accumulation of mineral nu -
trients, and the balance of nutrients and Na. AM fungi 
regulated antioxidant enzymes and the osmotic metab -
olism system, and thus enhanced the plant’s tolerance to 
salt stress. The effect of dual inoculation with two AM 
fungal species was more profound than that of a single 
species. Research on the pathways of enhanced plant salt 
tolerance has practical significance and broad application 
prospects. 
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Arbuskulaar-mükoriissete  seentega  inokuleerimise  mõju  Tagetes  erecta   
juuretunnustele  ja  soolsustaluvusele 

 
Yanlin Zhai, Lijun Xing, Xueyi Hu, Wei Li, Xin Tang ja Shaoxia Guo 

 
Mulla sooldumine on ülemaailmne keskkonnaprobleem. Arbuskulaar-mükoriissetel (AM) seentel on võime suurendada 
taimede vastupidavust stressile, näiteks parandada taimede soolsustaluvust. Töös uuriti AM seente (Funneliformis 
mosseae, Rhizophagus intraradices või F. mosseae ja R. intraradices koos) ja viie erineva NaCl taseme mõju Tagetes 
erecta kasvule ja füsioloogiale kasvuhoonetingimustes. 

Tulemused näitasid, et inokulatsioon ühtaegu kahe seeneliigiga (F. mosseae ja R. intraradices) suurendab oluliselt 
soolastressi all olevate T. erecta taimede juurte kogupikkust, juurte pindala ja ruumala ning juuretippude arvu. AM seen-
tega inokuleerimine pärssis Na+ kogunemist lehtedesse ja soodustas N, P, K ja Ca imendumist lehtedes ning suurendas 
seega K+/Na+, Ca2+/Na+, N/Na+ ja P/Na+ suhtelisi sisaldusi soolastressi all kannatavates lehtedes. Kõrgeim korrelat-
sioonikoefitsient (0,964) oli juurte ruumala ja lehtede K+ sisalduse vahel, samas kui korrelatsioon juurte pindala ja 
lehtede Na+ sisalduse vahel oli kõige madalam (–0,95). AM seened parandasid taimerakkude osmoosi regulatsiooni või-
met, suurendasid antioksüdantsete ensüümide aktiivsust ning vähendasid rakumembraanide kahjustusi. 

Järeldame, et AM seened parandavad T. erecta soolsustaluvust, muutes juurte morfoloogilisi tunnuseid, reguleerides 
Na+ ja teiste toitainete omastamist ja osmoosi ning suurendades antioksüdantsete ensüümide aktiivsust.
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