Shungite is used in water filters that remove Escherichia coli from water. The mechanism and spectrum of the antibacterial activity of shungite are not precisely known. In this study, shungite and its dried water extract were characterized by means of X-ray diffraction, X-ray fluorescence and iodometry. The dried residue of the water extract of shungite was relatively poor in carbon (28.1% in the rock vs 0.5% in the residue), silica (23.9% in the rock vs 0.3% in the residue) and potassium (1.14% vs 0.05%), but rich in sulfur (1.6% vs 21.6%) and some metals, including iron (1.4% vs 10%), aluminum (2.1% vs 5%) and nickel (0.02% vs 1.14%). The survival of Escherichia coli, Pseudomonas aeruginosa, Staphylococcus aureus, Candida albicans, Streptococcus uberis and Saccharomyces cerevisiae in shungite water was measured. Escherichia coli, Pseudomonas aeruginosa and Streptococcus uberis did not survive for 24 hours in 3:7 shungite water extract, while Staphylococcus aureus, Candida albicans and Saccharomyces cerevisiae survived as well as in distilled water. Neutralization of pH did not abolish the bactericidal effect. However, in the presence of nutrients, shungite water did not show bacteriostatic or bactericidal effects.
Baati, T., Bourasset, F., Gharbi, N., Njim, L., Abderrabba, M., Kerkeni A., Szwarc, H. and Moussa, F. 2012. The prolongation of the lifespan of rats by repeated oral ad- ministration of [60] fullerene. Biomaterials, 33(19), 4936–4946.
https://doi.org/10.1016/j.biomaterials.2012.03.036
Ballantyne, E. N. 1930. On certain factors influencing the survival of bacteria in water and in saline solutions. J. Bacteriol., 19(5), 303–320.
https://doi.org/10.1128/jb.19.5.303-320.1930
Buseck, P. R. 2002. Geological fullerenes: review and analysis. Earth Planet. Sci. Lett., 203(3–4), 781–792.
https://doi.org/10.1016/S0012-821X(02)00819-1
Charykova, M. V., Bornyakova, I. I., Polekhovskii, Y. S., Charykov, N. A., Kustova, E. V. and Arapov, O.V. 2006. Chemical composition of extracts from shungite and “shungite water”. Russ. J. Appl. Chem., 79(1), 29–33.
https://doi.org/10.1134/S107042720601006X
Dallakyan, G. A., Pogosyan, S. I. and Ipatova, V. I. 2018. The combined effect of shungite and heavy metals on the growth of microalgae pоpulation. Inland Water Biol., 11(1), 103–107.
https://doi.org/10.1134/S1995082918010042
Efremova, S. V. 2006. Water treatment with a shungite sorbent and biosorbents on its base. Russ. J. Appl. Chem., 79(3), 397–402.
https://doi.org/10.1134/S1070427206030128
Grohn, K. J., Moyer, B. S., Wortel, W. C., Fisher, C. M., Lumen, E., Bianchi, A. H. et al. 2021. C60 in olive oil causes light-dependent toxicity and does not extend lifespan in mice. GeroScience, 43(2), 579–591.
https://doi.org/10.1007/s11357-020-00292-z
Ivankin, P. F., Galdobina, L. P. and Kalinin, Y. K. 1987. Shungites: origin and classification of a new carbon mineral resource. Int. Geol. Rev., 29(10), 1208–1214.
https://doi.org/10.1080/00206818709466215
Khadartsev, A. A. and Tuktamyshev, I. S. 2002. Шунгиты в медицинских технологиях (Shungites in medical technology). Вестник новых медицинскихтехнологий, 9(2), 83–86 (in Russian).
Kovalevski, V. V. and Moshnikov, I. A. 2016. TEM study of structure of graphene layers in shungite carbon. Nanosyst.: Phys., Chem., Math., 7(1), 210–213.
https://doi.org/10.17586/2220-8054-2016-7-1-210-213
Lang U. 2013. Minimal inhibitory concentration of natural vinegar and of aluminium acetate-tartrate solution. Otol. Neurotol., 34(5), 795–797.
https://doi.org/10.1097/MAO.0b013e31829411d7
Liu, S., Zeng, T. H., Hofmann, M., Burcombe, E., Wie, J., Jiang, R. et al. 2011. Antibacterial activity of graphite, graphite oxide, graphene oxide, and reduced graphene oxide: membrane and oxidative stress. ACS Nano, 5(9), 6971–6980.
https://doi.org/10.1021/nn202451x
Londono, S. C., Hartnett, H. E. and Williams, L. B. 2017. Antibacterial activity of aluminum in clay from the Colombian Amazon. Environ. Sci. Technol., 51(4), 2401–2408.
https://doi.org/10.1021/acs.est.6b04670
Lu, H. J., Breidt, F., Pérez-Díaz, I. M. and Osborne, J. A. 2011. Antimicrobial effects of weak acids on the survival of Escherichia coli O157:H7 under anaerobic conditions. J. Food Prot., 74(6), 893–898.
https://doi.org/10.4315/0362-028X.JFP-10-404
Lyn’kov, L. M., Borbot’ko, T. V. and Krishtopova, E. A. 2009. Radio-absorbing properties of nickel-containing schungite powder. Tech. Phys. Lett., 35(5), 410–411.
https://doi.org/10.1134/S1063785009050071
Mosin, O. V. and Ignatov, I. 2012. Состав и структурные свойства природного фуллеренсодержащего минерала шунгита (The composition and structural properties of fullerene natural mineral shungite). Наноинженерия, 18(12), 17–24 (in Russian).
Mosin, O. V. and Ignatov, I. 2013. The structure and composition of natural carbonaceous fullerene containing mineral shungite. Int. J. Adv. Sci. Tech. Res., 6(3), 9–21.
Rozhkov, S. P. and Goryunov, A. S. 2013. Interaction of shungite carbon nanoparticles with blood protein and cell components. Russ. J. Gen. Chem., 83(13), 2585–2595.
https://doi.org/10.1134/S1070363213130021
Sajo, M. E. J., Kim, C.-S., Kim, S.-K., Shim, K. Y., Kang, T.-Y. and Lee, K.-J. 2017. Antioxidant and anti-inflammatory effects of shungite against ultraviolet B irradiation-induced skin damage in hairless mice. Oxid. Med. Cell Longev., 2017, ID7340143.
https://doi.org/10.1155/2017/7340143
Santos, V. G., Fasciotti, M., Pudenzi, M. A., Klitzke, C. F., Nascimento, H. L., Pereira, R. C. L. et al. 2016. Fullerenes in asphaltenes and other carbonaceous materials: natural constituents or laser artifacts. Analyst, 141(9), 2767–2773.
https://doi.org/10.1039/C5AN02333E
Serrano, C., Romero, M., Alou, L., Sevillano, D., Corvillo, I., Armijo, F. and Maraver, F. 2012. Survival of human pathogenic bacteria in different types of natural mineral water. J. Water Health, 10(3), 400–405.
https://doi.org/10.2166/wh.2012.009
Sheka, E. F. and Rozhkova, N. N. 2014. Shungite as the natural pantry of nanoscale reduced graphene oxide. Int. J. Smart Nano Mater., 5(1), 1–16.
https://doi.org/10.1080/19475411.2014.885913
Sheka, E. F., Natkaniec, I., Rozhkova, N. N. and Holderna-Natkaniec, K. 2014. Neutron scattering study of reduced graphene oxide of natural origin. JETP Lett., 99(11), 650–655.
https://doi.org/10.1134/S0021364014110113
Siwila, S. and Brink, I. C. 2019a. Comparison of five point-of-use drinking water technologies using a specialized comparison framework. J. Water Health, 17(4), 568–586.
https://doi.org/10.2166/wh.2019.041
Siwila, S. and Brink, I. C. 2019b. Low cost drinking water treatment using nonwoven engineered and woven cloth fabrics. J. Water Health, 17(1), 98–112.
https://doi.org/10.2166/wh.2018.226
Skrypnik, L., Babich, O., Sukhikh, S., Shishko, O., Ivanova, S., Mozhei, O. et al. 2021. A study of the antioxidant, cytotoxic activity and adsorption properties of Karelian shungite by physicochemical methods. Antioxidants (Basel), 10(7), 1121.
https://doi.org/10.3390/antiox10071121
Tyutyunnik, N. N., Unzhakov, A. R., Uzenbaeva L. B., Golubeva, A. G., Ilykha, V. A., Kalinina, S. N. et al. 2009. Influence of shungite carbon nanoparticles on the physiological condition of dark brown mink (Neovision Vision SCHR. 1777). Scientifur, 33(3), 88.