The aim of this paper is to introduce three modified shrinking projection methods involving two G-nonexpansive map- pings. We also prove the convergence of our proposed iterations to obtain the common fixed points of G-nonexpansive mappings in the setting of CAT(0) space. In addition we construct a numerical example which supports our main results and show a comparison of new iterative schemes by using MATLAB2018a.
1. Alfuraidan, M. R. Fixed points of monotone nonexpansive mappings with a graph. Fixed Point Theory Appl., 2015, 49.
https://doi.org/10.1186/s13663-015-0299-0
2. Alfuraidan, M. R. and Khamsi, M. A. Fixed points of monotone nonexpansive mappings on a hyperbolic metric space with a graph. Fixed Point Theory Appl., 2015, 44.
https://doi.org/10.1186/s13663-015-0294-5
3. Banach, S. Sur les opérations dans les ensembles abstraits et leur application aux quations intgrales. Fundam. Math., 1922, 3(1), 133–181.
https://doi.org/10.4064/fm-3-1-133-181
4. Berg, I. D. and Nikolaev, I. G. Quasilinearization and curvature of Aleksandrov spaces. Geom. Dedicata., 2008, 133, 195–218.
https://doi.org/10.1007/s10711-008-9243-3
5. Bridson, M. R. and Haefliger, A. Metric Spaces of Non-positive Curvature. Springer-Verlag, Berlin 1999.
https://doi.org/10.1007/978-3-662-12494-9
6. Dehghan, H. and Rooin, J. Metric projection and convergence theorems for nonexpansive mappings in Hadamard spaces. J. Nonlinear Convex Anal., 2013.
https://doi.org/10.48550/arXiv.1410.1137
7. Hammad, H. A., Cholamjiak, W. and Yambangwai, D. A Modified shrinking projection method for numerical reckoning fixed points of G-nonexpansive mappings in Hilbert spaces with graphs. Miskolc Math. Notes, 2019, 20(2), 941–956.
https://doi.org/10.18514/MMN.2019.2954
8. Jachymski, J. The contraction principle for mappings on a metric space with a graph. Proc. Am. Math., Soc. 2008, 136(4), 1359–1373.
https://doi.org/10.1090/S0002-9939-07-09110-1
9. Khatibzadeh, H. and Ranjbar, S. Monotone operators and the proximal point algorithm in complete CAT(0) metric spaces. J. Aust. Math. Soc., 2017, 103(1), 70–90.
https://doi.org/10.1017/S1446788716000446
10. Kirk, W. A. Geodesic geometry and fixed point theory. In Proceedings of the Seminar of Mathematical Analysis, Malaga/Seville, 2002/2003. Seville University Publications, 2003, 64, 195–225.
11. Kirk, W. A. and Panyanak, B. A concept of convergence in geodesic spaces. Nonlinear Anal., 2008, 68(12), 3689–3696.
https://doi.org/10.1016/j.na.2007.04.011
12. Lim, T. C. Remarks on some fixed point theorems. Proc. Am. Math. Soc., 1976, 60, 179–182.
https://doi.org/10.1090/S0002-9939-1976-0423139-X
13. Suparatulatorn, R., Cholamjiak, W. and Suantai, S. A modified S-iteration process for G-nonexpansive mappings in Banach spaces with graphs. Numer. Algorithms, 2018, 77, 479–490.
https://doi.org/10.1007/s11075-017-0324-y
14. Takahashi, W., Takeuchi, Y. and Kubota, R. Strong convergence theorems by hybrid methods for families of nonexpansive mappings in Hilbert spaces. J. Math. Anal. Appl., 2008, 341(1), 276–286.
https://doi.org/10.1016/j.jmaa.2007.09.062
15. Thianwan, T. and Yambangwai, D. Convergence analysis for a new two-step iteration process for G-nonexpansive map- pings with directed graphs. J. Fixed Point Theory Appl., 2019, 21(44).
https://doi.org/10.1007/s11784-019-0681-3
16. Tiammee, J., Kaewkhao, A. and Suantai, S. On Browder’s convergence theorem and Halpern iteration process for G- nonexpansive mappings in Hilbert spaces endowed with graphs. Fixed Point Theory Appl., 2015, 187.
https://doi.org/10.1186/s13663-015-0436-9
17. Tripak, O. Common fixed points of G-nonexpansive mappings on Banach spaces with a graph. Fixed Point Theory Appl., 2016, 87.
https://doi.org/10.1186/s13663-016-0578-4
18. Yambangwai, D. and Thianwan, T. ∆-Convergence and Strong Convergence for Asymptotically Nonexpansive Mappings on a CAT(0) Space. Thai J. Math., 2021, 19(3), 813–826.
19. Yambangwai, D. and Thianwan, T. Convergence point of G-nonexpansive mappings in Banach spaces en- dowed with graphs applicable in image deblurring and signal recovering problems. Ric. di mat., 2021.
https://doi.org/10.1007/s11587-021-00631-y
20. Yambangwai, D. and Thianwan, T. An efficient iterative algorithm for common solutions of three G-nonexpansive map- pings in Banach spaces involving a graph with applications to signal and image restoration problems. AIMS Mathematics, 2022, 7(1), 1366–1398.
https://doi.org/10.3934/math.2022081
21. Yambangwai, D., Aunruean, S. and Thianwan, T. A new modified three-step iteration method for G-nonexpansive mappings in Banach spaces with a graph. Numer. Algorithms, 2019, 84(2), 437–565.
https://doi.org/10.1007/s11075-019-00768-w