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Abstract. The aim of this paper is to introduce three modified shrinking projection methods involving two G -nonexpansive map-
pings. We also prove the convergence of our proposed iterations to obtain the common fixed points of G -nonexpansive mappings in
the setting of CAT(0) space. In addition we construct a numerical example which supports our main results and show a comparison
of new iterative schemes by using MATLAB2018a.
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1. INTRODUCTION

In 1922, Banach proved a classical theorem known as Banach’s contraction theorem [3], which ensures the
existence of a unique fixed point for a contraction mapping in a complete metric space. Banach’s contraction
theorem has been generalized in many directions due to its numerous applications.

In 2008, Jachymski [8] proved the Banach contraction theorem for G -contraction mappings, next
Tiammee et al. [16] proved Browder’s convergence theorem for G -nonexpansive mappings. Toward this
direction, many authors dealt with the existence of fixed points of G -contraction mappings, G -nonexpansive
mappings and monotone nonexpansive mappings in Banach, Hilbert and hyperbolic metric spaces with
directed graph (for more details see [1,2]).

Recently, Tripak [17], Suparatulatorn et al. [13] and Thianwan and Yambangwai [15] proved the conver-
gence analysis of sequences generated by different iteration processes involving G -nonexpansive mappings
in Banach space with directed graph. For more details on modified iteration processes and G -nonexpansive
mappings we refer our readers to see [18–21].

In 2008, Takahashi et al. [14] proposed a modified hybrid method, the so-called shrinking projection
method, as follows: Let C be a non-empty closed convex subset of a Hilbert space H, T be a self-mapping
on C and F(T ) denote the set of fixed points of T :

x1 = x,
C1 =C,
yn = T xn,
Cn+1 = {z 2Cn : kyn � zk  kxn � zk},
xn+1 = PCn+1x,
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for each n 2 N. Takahashi et al. proved the strong convergence of this sequence to PFx. In 2019, Hammad
et al. [7] introduced four new modified shrinking projection methods with two step iterative schemes and
proved some convergence results in Hilbert spaces with graph.

Inspired by above work, we introduced three new modified shrinking projection methods involving two
G -nonexpansive mappings in CAT(0) spaces with graph. We also provide a numerical example to illustrate
the rate of convergence of our proposed methods.

2. PRELIMINARIES

This section includes some well-known lemmas and definitions.
Throughout this paper, we denote by X a CAT(0) space. Let C be a nonempty closed convex subset of

X .
Kirk introduced fixed point theory in CAT(0) space. For more details on CAT(0) spaces, see [9–11].

Let X be a complete CAT(0) space, for a bounded sequence {xn} in X and x 2 X , setting

r(x,{xn}) = limsup
n!•

d(x,xn).

The asymptotic radius r({xn}) is defined by

r({xn}) = inf{r(x,xn) : x 2 X }

and the asymptotic center A({xn}) of {xn} is defined by

A({xn}) = {x 2 X : r(x,xn) = r({xn})}.

In 2008, Kirk and Panyanak [11] introduced D-convergence in CAT(0) spaces which is analogue of weak
convergence in Banach spaces and restriction of Lim’s concepts of convergence [12] to CAT(0) spaces.
Definition. [11] Let X be a complete CAT(0) space, a sequence {xn} in X is said to D-converge to x 2 X
if x is the unique asymptotic center for every subsequence {un} of {xn}.
Proposition 2.1. [5] If sequence {xn} in X , D-converges to x 2 X , then

x 2
•\

k=1
co{xk,xk+1, ...},

where co(A ) =
T
{B : B ◆ A and B is closed and convex}.

Berg and Nikolaev [4] introduced the concept of quasi-linearization in CAT(0) spaces. Authors denoted
a pair (a,b) 2 X ⇥X by

�!
ab and called it a vector. Using this, they defined quasi-linearization as a map

h., .i : (X ⇥X )⇥ (X ⇥X )! R defined by

h
�!
ab,

�!
cdi= 1

2
(d2(a,d)+d

2(b,c)�d
2(a,c)�d

2(b,d)),a,b,c,d 2 X .

It can be seen that
h
�!
ab,

�!
abi= d

2(a,b),h
�!
ba,

�!
cdi=�h

�!
ab,

�!
cdi,h

�!
ab,

�!
cdi= h�!ae,

�!
cdi+h

�!
eb,

�!
cdi and h

�!
ab,

�!
cdi= h

�!
cd,

�!
abi for all a,b,c,

d,e, f 2 X .
Let X be a complete CAT(0) space and C be a nonempty subset of X . Let 4 denote the diagonal

of the cartesian product C ⇥C , i.e., 4 = {(x,x) : x 2 C }. Consider a directed graph G such that the set
V (G ) of its vertices coincides with C , and the set E(G ) of its edges contains all loops, i.e., E(G )◆4. We
identify the graph G with the pair (V (G ),E(G )) and assume that G has no parallel edge. A set B dominates
x0 if for each x 2 B, (x,x0) 2 E(G ) and B is said to be dominated by x0 if for each x 2 B, (x0,x) 2 E(G ).



Sabiya et al.: Modified shrinking projection methods 277

Let T : C ! C be a self map. An edge-preserving mapping, i.e.((x,y) 2 E(G )) (T x,T y) 2 E(G ))
is said to be G -nonexpansive if

d(T x,T y) d(x,y), 8(x,y) 2 E(G ).

Recall that a mapping T is said to be firmly nonexpansive [9] if

d
2(T x,T y) h

����!
T xT y,�!xyi,

for all x,y 2 X .
Let C be a non-empty closed and convex subset of a CAT(0) space. The metric projection PC : X !C

maps each point x 2 X to the unique point PC x 2 C such that

d(x,PC x) = inf{d(x,y) : y 2 C }.

We also know that PC is firmly nonexpansive, i.e.,

d
2(PC x,PC y) h

������!
PC xPC y,�!xyi,

for all x,y 2 X . Furthermore, h
���!
xPC x,

���!
yPC xi  0, for all x 2 X and y 2 C .

Lemma 2.1. [6] Let C be a closed, convex and nonempty subset of a CAT(0) space and PC : X ! C be

the metric projection. Then, we have the following inequality:

d
2(x,PC x)+d

2(y,PC x) d
2(x,y), f orallx 2 X andy 2 C .

Lemma 2.2. Let T : C ! C be a nonexpansive mapping, where C is a nonempty subset of a complete

CAT(0) space. Let G = (V (G ),E(G )) be a directed graph such that V (G ) = C . Then for any e > 0,

there exists a positive x (e) > 0, such that d(x,T x) < e for all x 2 co{x0,x1}, whenever x0,x1 2 C with

(x0,x),(x1,x) 2 E(G ), d(x0,T x0) x (e) and d(x1,T x1) x (e).
Proof. Let x = (1�l )x0 �lx1 for l 2 [0,1] and e > 0.
We assume two cases which are as follows:
Case 1. If d(x0,x1)<

e
3 , then

d(x,x0) = ld(x0,x1)<
e
3
.

If x (e)< e
3 , then we have

d(T x,x)  d(T x,T x0)+d(T x0,x0)+d(x0,x)
 2d(x,x0)+d(T x0,x0)
< 2( e

3 )+x (e)
< e.

Case 2. If d(x0,x1)� e
3 , then for any non-negative number l < e

3d(x0,x1)
, we have

d(x,x0) = ld(x0,x1)<
e
3
.

If x (e)< e
3 and l < e

3d(x0,x1)
, then we have

d(T x,x)  d(T x,T x0)+d(T x0,x0)+d(x0,x)
 2d(x,x0)+d(T x0,x0)
< 2( e

3 )+x (e)
< e.

(2.1)
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We may assume that λ ∈ [ ε
3d(x0,x1)

,1] and d(x0,x1)≥ ε
3 . Then, we obtain

d(T x,x0) ≤ d(T x,T x0)+d(T x0,x0)
≤ d(x,x0)+d(T x0,x0)
≤ d(x,x0)+ξ (ε)
= λd(x1,x0)+ξ (ε)

(2.2)

and
d(T x,x1) ≤ d(T x,T x1)+d(T x1,x1)

≤ d(x,x1)+d(T x1,x1)
≤ d(x,x1)+ξ (ε)
= (1−λ )d(x1,x0)+ξ (ε).

(2.3)

From (2.2), (2.3) and λ ∈ [ ε
3d(x0,x1)

,1], in the case of (1−λ )< ε
3d(x0,x1)

we obtain

d(T x,x) ≤ (1−λ )d(T x,x0)+λd(T x,x1)
≤ 2(1−λ )λd(x1,x0)+ξ (ε)
< ε.

For the case of (1−λ )≥ ε
3d(x0,x1)

, we set u = d(T x,x0)
λd(x1,x0)

, v = d(T x,x1)
(1−λ )d(x1,x0)

. By the uniform convexity of CAT(0)
space [5], we have d(u,v)≤ ε

d(x0,x1)
. This implies that

d(T x,x) = λ (1−λ )d(u,v)d(x1,x0)< ε.

3. CONVERGENCE RESULTS

In this section, first we prove demiclosedness principle of a G -nonexpansive mapping in CAT(0) space
which will be used in our main results.
Theorem 3.1. Let T : C → C be a G -nonexpansive mapping, where C is a closed non-empty convex
subset of a complete CAT(0) space X . Let G = (V (G ),E(G )) be a directed graph such that V (G ) = C
and the sequence {xn} in C ∆-converges to x ∈ C . If there exists a subsequence {xnk} of {xn} such that
(xnk ,x) ∈ E(G ) for all k ∈ N and d(xn,T xn)→ 0, then T x = x.
Proof. Let the sequence {xn} in C ∆-converge to x ∈ C and d(xn,T xn)→ 0. By the hypothesis, there exists
a subsequence {xnk} of {xn} such that (xnk ,x) ∈ E(G ). By setting, εnk = d(xnk ,T xnk). Let ε > 0. Since
εnk → 0 as k → ∞ there exists N ∈ N such that εnk < ε for all k ≥ N.

By the above Lemma 2.2, for each z∈ co{xnk : k ≥N}, d(z,T z)< ε . By Proposition 2.1, co{xnk : k ≥N}
contains the ∆-limit, x, of subsequence {xnk}. This implies that d(x,T x)< ε . Hence, d(x,T x) = 0, that is
x = T x, since ε is arbitrary.
Theorem 3.2. Let X be a complete CAT(0) space and C a closed non-empty convex subset of X such that
a subset {z ∈ X : d(x,z) ≤ d(y,z)} is convex for all x,y ∈ X . Let G = (V (G ),E(G )) be a directed graph
such that V (G ) = C and E(G ) is convex. Let T1,T2 : C → C be two G -nonexpansive mappings such that
F =F (T1)∩F (T2) '= /0, F is closed and F (T1)×F (T2)⊆ E(G ). Let the sequence {rn} be generated
by r1 ∈ C with C1 = C ,

xn = (1− ςn)rn ⊕ ςnT1rn,
yn = (1−ηn)T1rn ⊕ηnT1xn,
zn = (1−ζn)T2yn ⊕ζnT1xn,
Cn+1 = {z ∈ Cn : d(zn,z)≤ d(rn,z)},
rn+1 = PCn+1r1,n ≥ 1,

(i)

where {ζn}, {ηn}, {ςn}⊂ [0,1]. Suppose that the following conditions are satisfied:
(i) {rn} dominates ρ for all ρ ∈ F and if there exists a subsequence {rnk} of {rn} such that {rnk} ∆−



Sabiya et al.: Modified shrinking projection methods 279

converges to w ∈ C , then (rnk ,w) ∈ E(G );
(ii) liminf

n→∞
ηn > 0;

(iii) 0 < liminf
n→∞

ζn ≤ limsup
n→∞

ζn < 1;

(iv) 0 < liminf
n→∞

ςn ≤ limsup
n→∞

ςn < 1.

Then, the sequence {rn} converges strongly to PF r1.
Proof. We will start with proving that PCn+1r1 is well defined for each r1 ∈ C . As shown in Tiammee et al.
[16], F (Ti) is convex for all i = 1,2. F is closed and convex by using the assumption. Hence, PF r1 is
well defined. Let ρ ∈F . Since {rn} dominates ρ , we have (rn,ρ)∈E(G ). Using the edge preservingness of
T1 and convexity of E(G ), we have (xn,ρ) ∈ E(G ). We also have (T1rn,ρ) and (T1xn,ρ) ∈ E(G ) because
T1 is edge preserving. By convexity of E(G ), we have (yn,ρ) ∈ E(G ). By using the edge preservingness
of T1 and T2, (T1xn,ρ), (T2yn,ρ) ∈ E(G ). Again applying convexity of E(G ), we have (zn,ρ) ∈ E(G ).

d(zn,ρ) = d((1−ζn)T2yn ⊕ζnT1xn,ρ)
≤ (1−ζn)d(T2yn,ρ)+ζnd(T1xn,ρ)
≤ (1−ζn)d(yn,ρ)+ζnd(xn,ρ)
≤ (1−ζn)[d((1−ηn)T1rn ⊕ηnT1xn,ρ)]+ζn[d((1− ςn)rn ⊕ ςnT1rn,ρ)]
≤ (1−ζn)(1−ηn)d(T1rn,ρ)+(1−ζn)ηnd(T1xn,ρ)+ζn(1− ςn)d(rn,ρ)+ζnςnd(T1rn,ρ)
≤ (1−ζn)(1−ηn)d(rn,ρ)+(1−ζn)ηnd(rn,ρ)+ζnd(rn,ρ)
≤ d(rn,ρ).

By definition of Cn+1, we have ρ ∈ Cn+1. Thus F ⊂ Cn+1. It is easy to see that Cn+1 is closed and by our
assumption it is convex. This implies that PCn+1r1 is well defined for all r1 ∈ C .

Next, we will show that lim
n→∞

d(rn,r1) exists. Since F is closed convex and non-empty subset of X ,
there exists a unique v ∈ F such that v = PF r1. From rn = PCnr1 and rn+1 ∈ Cn, for all n ∈ N,

d(rn,r1)≤ d(rn+1,r1). (3.1)

As we know that F ⊂ Cn, we obtain
d(rn,r1)≤ d(v,r1). (3.2)

It follows from (3.1) and (3.2) that the sequence {rn} is nondecreasing and bounded. Therefore, lim
n→∞

d(rn,r1)

exists.
To show that rn →w∈C as n→∞. For m> n, we have rm =PCmr1 ∈Cm ⊂Cn, by definition of Cn. We have

〈
−−−−−→
r1PCmr1,

−−−−−→
PCmr1rn〉 ≥ 0,

d2(rm,rn)≤ d2(rm,r1)−d2(rn,r1).

Since lim
n→∞

d(rn,r1) exists, we obtain {rn} as a Cauchy sequence. This implies that there exists w ∈ C such
that rn → w ∈ C as n → ∞. We also have

lim
n→∞

d(rn+1,rn) = 0. (3.3)

Next, we will have to show that w ∈ F . Since rn+1 ∈ Cn+1 ⊂ Cn. From (3.3), we have

d(zn,rn) ≤ d(zn,rn+1)+d(rn+1,rn)
≤ 2 d(rn+1,rn)
→ 0 (as n → ∞).

(3.4)

lim inf lim sup

lim suplim inf

lim inf
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Since {rn} dominates r 2 F and using (2.2), we have

d
2(zn,r) = d

2((1�zn)T2yn �znT1xn,r)
 (1�zn)d2(T2yn,r)+znd

2(T1xn,r)�zn(1�zn)d2(T2yn,T1xn)
 (1�zn)d2(yn,r)+znd

2(xn,r)
 (1�zn)d2((1�hn)T1rn �hnT1xn,r)+znd

2((1� Vn)rn � VnT1rn,r)
 (1�zn)[(1�hn)d2(rn,r)+hnd

2(xn,r)]+znd
2(rn,r)

 (1�zn)[(1�hn)d2(rn,r)+hnd
2(rn,r)�hnVn(1� Vn)d2(T1rn,rn)]+znd

2(rn,r)
 d

2(rn,r)�hnVn(1�zn)(1� Vn)d2(rn,T1rn)

and
d

2(zn,r) = d
2((1�zn)T2yn �znT1xn,r)

 (1�zn)d2(T2yn,r)+znd
2(T1xn,r)�zn(1�zn)d2(T2yn,T1xn)

 (1�zn)d2(yn,r)+znd
2(xn,r)�zn(1�zn)d2(T2yn,T1xn)

 d
2(rn,r)�zn(1�zn)d2(T2yn,T1xn).

This implies that
hnVn(1�zn)(1� Vn)d

2(T1rn,rn) d
2(rn,r)�d

2(zn,r)

and
zn(1�zn)d

2(T2yn,T1xn) d
2(rn,r)�d

2(zn,r).

From our assumptions and (3.4), we have

lim
n!•

d(T1rn,rn) = 0 (3.5)

and
lim
n!•

d(T2yn,T1xn) = 0. (3.6)

From (3.5) we get
d(xn,rn)  d((1� Vn)rn � VnT1rn,rn)

 Vnd(T1rn,rn)
! 0 (as n ! •).

(3.7)

From (3.5) and (3.7) we get

d(yn,rn)  d((1�hn)T1rn �hnT1xn,rn)
 (1�hn)d(T1rn,rn)+hnd(T1xn,rn)
 (1�hn)d(T1rn,rn)+hnd(T1xn,T1rn)+hnd(T1rn,rn)
! 0 (as n ! •).

(3.8)

From (3.5), (3.6), (3.7) and (3.8), we have

d(T2rn,rn)  d(T2rn,T2yn)+d(T2yn,rn)
 d(rn,yn)+d(T2yn,T1xn)+d(T1xn,xn)+d(xn,rn)
 d(rn,yn)+d(T2yn,T1xn)+d(T1xn,T1rn)+d(T1rn,rn)+2d(xn,rn)
 d(rn,yn)+d(T2yn,T1xn)+d(xn,rn)+d(T1rn,rn)+2d(xn,rn)
! 0 (as n ! •).

(3.9)

From (3.5), (3.9) and Theorem 3.1, we have w 2 F .
Next, we show that w = v = PF r1. Since rn = PCn

r1, we have

h
�����!
r1PCn

r1,
�����!
PCn

r1ri � 0,8r 2 Cn,
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〈−−→r1rn,
−→rnρ〉 ≥ 0,∀ρ ∈ Cn. (3.10)

Taking limit in (3.10), we obtain
〈−→r1w,−→wρ〉 ≥ 0,∀ρ ∈ Cn. (3.11)

Since F ⊂ Cn, so w = PF r1.
Theorem 3.3. Let X , C , T1 and T2 be defined as in Theorem 3.2. Let G = (V (G ),E(G )) be a directed
graph such that V (G ) = C , E(G ) is convex and F = F (T1)∩F (T2) *= /0, F is closed and F (T1)×
F (T2)⊆ E(G ). Let the sequence {tn} be generated by t1 ∈ C with C1 = C ,

xn = (1− ςn)tn ⊕ ςnT1tn,
yn = (1−ηn)T1tn ⊕ηnT1xn,
zn = (1−ζn)T2xn ⊕ζnT1yn,
Cn+1 = {z ∈ Cn : d(zn,z)≤ d(tn,z)},
tn+1 = PCn+1t1,n ≥ 1,

(ii)

where {ζn}, {ηn}, {ςn}⊂ (0,1). Suppose that the following conditions are satisfied:
(i) {tn} dominates ρ for all ρ ∈F and if there exists a subsequence {tnk} of {tn} such that {tnk} ∆-converges
to w ∈ C , then (tnk ,w) ∈ E(G );
(ii) 0 < liminf

n→∞
ζn ≤ limsup

n→∞
ζn < 1;

(iii) 0 < liminf
n→∞

ςn ≤ limsup
n→∞

ςn < 1.

Then, the sequence {tn} converges strongly to PF t1.
Proof. We set tn = rn, by the same proof of Theorem 3.2, then PF t1 is well defined and Cn+1 is convex and
closed. Let ρ ∈ F . Since {tn} dominates ρ , we have (tn,ρ) ∈ E(G ). By using the edge preservingness of
T1 and convexity of E(G ), we have (xn,ρ) ∈ E(G ). We also have (T1xn,ρ) ∈ E(G ) and (T1tn,ρ) ∈ E(G )
as T1 is edge-preserving. Again, by using the convexity of E(G ), we have (yn,ρ) ∈ E(G ). We have
(yn,ρ),(xn,ρ) ∈ E(G ) and using the edge preservingness of T1 and T2 and convexity of E(G ), we have
(zn,ρ) ∈ E(G ).

d(zn,ρ) = d((1−ζn)T2xn ⊕ζnT1yn,ρ)
≤ (1−ζn)d(T2xn,ρ)+ζnd(T1yn,ρ)
≤ (1−ζn)d(xn,ρ)+ζnd(yn,ρ)
≤ (1−ζn)[d((1− ςn)tn ⊕ ςnT1tn,ρ)]+ζn[d((1−ηn)T1tn ⊕ηnT1xn,ρ)]
≤ (1−ζn)(1− ςn)d(tn,ρ)+(1−ζn)ςnd(T1tn,ρ)+ζn(1−ηn)d(T1tn,ρ)+ζnηnd(T1xn,ρ)
≤ (1−ζn)d(tn,ρ)+ζn(1−ηn)d(tn,ρ)+ζnηnd((1− ςn)tn ⊕ ςnT1tn,ρ)
≤ (1−ζn)d(tn,ρ)+ζn(1−ηn)d(tn,ρ)+ζnηn(1− ςn)d(tn,ρ)+ζnηnςnd(T1tn,ρ)
≤ (1−ζn)d(tn,ρ)+ζn(1−ηn)d(tn,ρ)+ζnηn(1− ςn)d(tn,ρ)+ζnηnςnd(tn,ρ)
≤ ((1−ζn)+ζn(1−ηn)+ζnηn(1− ςn)+ζnηnςn)d(tn,ρ)
≤ d(tn,ρ).

By definition of Cn+1, we have ρ ∈ Cn+1. Thus F ⊂ Cn+1. This implies that PCn+1t1 is well defined. Next,
we show that lim

n→∞
d(tn, t1) exists. Since F is non-empty convex closed subset of X , there exists a unique

v ∈ F such that v = PF t1. By tn = PCnt1 and tn+1 ∈ Cn, for all n ∈ N,

d(tn, t1)≤ d(tn+1, t1). (3.12)

As we know that F ⊂ Cn, we obtain
d(tn, t1)≤ d(v, t1). (3.13)

By using (3.12) and (3.13), we get that the sequence {tn} is non-decreasing and bounded. Therefore
lim
n→∞

d(tn, t1) exists.

lim inf lim sup

lim suplim inf
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To show that tn !w2C as n!•. For m> n, we have tm =PCm
t1 2Cm ⇢Cn, by definition of Cn. We have

h
�����!
t1PCm

t1,
�����!
PCm

t1tni � 0,

d
2(tm, tn) d

2(tm, t1)�d
2(tn, t1).

Since lim
n!•

d(tn, t1) exists, we obtain that {tn} is a Cauchy sequence. This implies that there exists w 2 C

such that tn ! w 2 C as n ! •. We also have

lim
n!•

d(tn+1, tn) = 0. (3.14)

Next, we show that w 2 F . Since tn+1 2 Cn+1 ⇢ Cn. From (3.14), we have

d(zn, tn)  d(zn, tn+1)+d(tn+1, tn)
 2d(tn+1, tn)
! 0 (as n ! •).

(3.15)

Since {tn} dominates r 2 F and using (2.2), we have

d
2(zn,r) = d

2((1�zn)T2xn �znT1yn,r)
 (1�zn)d2(T2xn,r)+znd

2(T1yn,r)�zn(1�zn)d2(T2xn,T1yn)
 (1�zn)d2(xn,r)+znd

2(yn,r)
 (1�zn)d2((1� Vn)tn � VnT1tn,r)+znd

2((1�hn)T1tn �hnT1xn,r)
 (1�zn)[d2(tn,r)� Vn(1� Vn)d2(tn,T1tn)]+
zn[(1�hn)d2(tn,r)+hnd

2((1� Vn)tn � VnT1tn,r)]
 (1�zn)[d2(tn,r)� Vn(1� Vn)d2(tn,T1tn)]+
zn[(1�hn)d2(tn,r)+hn(1� Vn)d2(tn,r)+ Vnd

2(T1tn,r)]
 (1�zn)[d2(tn,r)� Vn(1� Vn)d2(tn,T1tn)]
+zn[(1�hn)d2(tn,r)+hnd

2(tn,r)]
 (1�zn)[d2(tn,r)� Vn(1� Vn)d2(tn,T1tn)]+zn[d2(tn,r)]
 d

2(tn,r)� Vn(1� Vn)(1�zn)d2(tn,T1tn)

and
d

2(zn,r) = d
2((1�zn)T2xn �znT1yn,r)

 (1�zn)d2(T2xn,r)+znd
2(T1yn,r)�zn(1�zn)d2(T2xn,T1yn)

 (1�zn)d2(xn,r)+znd
2(yn,r)�zn(1�zn)d2(T2xn,T1yn)

 d
2(tn,r)�zn(1�zn)d2(T2xn,T1yn).

This implies that
Vn(1� Vn)(1�zn)d

2(tn,T1tn) d
2(tn,r)�d

2(zn,r)

and
zn(1�zn)d

2(T2xn,T1yn) d
2(tn,r)�d

2(zn,r).

From our assumption and (3.15), we have

lim
n!•

d(T1tn, tn) = 0 (3.16)

and
lim
n!•

d(T2xn,T1yn) = 0. (3.17)
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It follows from (3.16)
d(xn, tn) ≤ d((1− ςn)tn ⊕ ςnT1tn, tn)

≤ ςnd(T1tn, tn)
→ 0 (as n → ∞).

(3.18)

From (3.16) and (3.18)

d(yn, tn) ≤ d((1−ηn)T1tn ⊕ηnT1xn, tn)
≤ (1−ηn)d(T1tn, tn)+ηnd(T1xn, tn)
≤ (1−ηn)d(T1tn, tn)+ηnd(T1xn,T1tn)+ηnd(T1tn, tn)
≤ (1−ηn)d(T1tn, tn)+ηnd(xn, tn)+ηnd(T1tn, tn)
→ 0 (as n → ∞).

(3.19)

From (3.16), (3.17), (3.18) and (3.19) we have

d(T2tn, tn) ≤ d(T2tn,T2xn)+d(T2xn, tn)
≤ d(tn,xn)+d(T2xn,T1yn)+d(T1yn, tn)
≤ d(tn,xn)+d(T2xn,T1yn)+d(T1yn,T1tn)+d(T1tn, tn)
≤ d(tn,xn)+d(T2xn,T1yn)+d(yn, tn)+d(T1tn, tn)
→ 0 (as n → ∞).

(3.20)

From (3.16), (3.20) and Theorem 3.1, we have w ∈ F .
Next, we show that w = v = PF t1. Since tn = PCnt1, we have

〈
−−−−→
t1PCnt1,

−−−−→
PCnt1ρ〉 ≥ 0,∀ρ ∈ Cn,

〈−→t1tn,
−→tnρ〉 ≥ 0,∀ρ ∈ Cn. (3.21)

Taking limit in (3.21), we obtain
〈−→t1w,−→wρ〉 ≥ 0,∀ρ ∈ Cn. (3.22)

Since F ⊂ Cn, so w = PF t1.
Theorem 3.4. Let X , C , T1 and T2 be defined as in Theorem 3.2. Let G = (V (G ),E(G )) be a directed
graph such that V (G ) = C , E(G ) is convex and F = F (T1)∩F (T2) ,= /0, F is closed and F (T1)×
F (T2)⊆ E(G ). Let the sequence {sn} be generated by s1 ∈ C with C1 = C ,

xn = (1− ςn)sn ⊕ ςnT1sn,
yn = (1−ηn)T1sn ⊕ηnT1xn,
zn = (1−ζn)T2sn ⊕ζnT1yn,
Cn+1 = {z ∈ Cn : d(zn,z)≤ d(sn,z)},
sn+1 = PCn+1s1,n ≥ 1,

(iii)

where {ζn}, {ηn}, {ςn}⊂ (0,1). Suppose that the following conditions are satisfied:
(i) {sn} dominates ρ for all ρ ∈ F and if there exists a subsequence {snk} of {sn} such that {snk} ∆−
converges to w ∈ C , then (snk ,w) ∈ E(G );
(ii) liminf

n→∞
ηn > 0;

(iii) 0 < liminf
n→∞

ζn ≤ limsup
n→∞

ζn < 1;

(iii) 0 < liminf
n→∞

ςn ≤ limsup
n→∞

ςn < 1.

Then, the sequence {sn} converges strongly to PF s1.
Proof. We set sn = rn, by the same proof of Theorem 3.1, then PF s1 is well defined and Cn+1 is convex
and closed. Let ρ ∈ F . Since {sn} dominates ρ , we have (sn,ρ) ∈ E(G ). Since T1 is edge-preserving and
E(G ) is convex, we get (xn,ρ) ∈ E(G ). We also have (T1xn,ρ) ∈ E(G ) and (T1sn,ρ) ∈ E(G ) as T1 is

lim inf lim sup

lim suplim inf

lim inf
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edge-preserving. Since E(G ) is convex, we get (yn,r) 2 E(G ). We have (sn,r),(yn,r) 2 E(G ) and using
the edge preservingness of T1 and T2 and using the convexity property of E(G ), we have (zn,r) 2 E(G ).

d(zn,r) = d((1�zn)T2sn �znT1yn,r)
 (1�zn)d(T2sn,r)+znd(T1yn,r)
 (1�zn)d(sn,r)+znd(yn,r)
 (1�zn)d(sn,r)+zn[d((1�hn)T1sn �hnT1xn,r)]
 (1�zn)d(sn,r)+zn(1�hn)d(T1sn,r)+znhnd(T1xn,r)
 (1�zn)d(sn,r)+zn(1�hn)d(sn,r)+znhnd((1� Vn)sn � VnT1sn,r)
 (1�zn)d(sn,r)+zn(1�hn)d(sn,r)+znhn(1� Vn)d(sn,r)+znhnVnd(T1sn,r)
 (1�zn)d(sn,r)+zn(1�hn)d(sn,r)+znhn(1� Vn)d(sn,r)+znhnVnd(sn,r)
 ((1�zn)+zn(1�hn)+znhn(1� Vn)+znhnVn)d(sn,r)
 d(sn,r).

By definition of Cn+1, we have r 2 Cn+1. Thus F ⇢ Cn+1. This implies that PCn+1s1 is well defined. In
the next step we show that lim

n!•
d(sn,s1) exists. We know that F is non-empty convex closed subset of X ;

there exists a unique v 2 F such that v = PF s1. By sn = PCn
s1 and sn+1 2 Cn, for all n 2 N,

d(sn,s1) d(sn+1,s1). (3.23)

As we know that F ⇢ Cn, we obtain
d(sn,s1) d(v,s1). (3.24)

It follows from (3.23) and (3.24) that the sequence {sn} is non-decreasing and bounded. This implies that
lim
n!•

d(sn,s1) exists.
To show that sn !w2C as n!•. For m> n, we have sm =PCm

s1 2Cm ⇢Cn, by definition of Cn. We have

h
�����!
s1PCm

s1,
�����!
PCm

s1sni � 0,

d
2(sm,sn) d

2(sm,s1)�d
2(sn,s1).

Since lim
n!•

d(sn,s1) exists, we obtain that {sn} is a Cauchy sequence. This implies that there exists w 2 C

such that sn ! w 2 C as n ! •. We also get

lim
n!•

d(sn+1,sn) = 0. (3.25)

Next, we will show that w 2 F . Because sn+1 2 Cn+1 ⇢ Cn. From (3.25), we have

d(zn,sn)  d(zn,sn+1)+d(sn+1,sn)
 2 d(sn+1,sn)
! 0 (as n ! •).

(3.26)

Since {sn} dominates r 2 F and using (2.2), we have

d
2(zn,r) = d

2((1�zn)T2sn �znT1yn,r)
 (1�zn)d2(T2sn,r)+znd

2(T1yn,r)�zn(1�zn)d2(T2sn,T1yn)
 (1�zn)d2(sn,r)+znd

2(yn,r)
 (1�zn)d2(sn,r)+znd

2((1�hn)T1sn �hnT1xn,r)
 (1�zn)d2(sn,r)+zn[(1�hn)d2(sn,r)+hnd

2((1� Vn)sn � VnT1sn,r)]
 (1�zn)d2(sn,r)+zn[(1�hn)d2(sn,r)+hn(1� Vn)d2(sn,r)+
Vnhnd

2(T1sn,r)+hnVn(1� Vn)d2(sn,T1sn)]
 (1�zn)d2(sn,r)+zn[(1�hn)d2(sn,r)+hnd

2(sn,r)+hnVn(1� Vn)d2(sn,T1sn)]
 d

2(sn,r)�znhnVn(1� Vn)d2(sn,T1sn)



Sabiya et al.: Modified shrinking projection methods 285

and
d2(zn,ρ) = d2((1−ζn)T2sn ⊕ζnT1yn,ρ)

≤ (1−ζn)d2(T2sn,ρ)+ζnd2(T1yn,ρ)−ζn(1−ζn)d2(T2sn,T1yn)
≤ (1−ζn)d2(sn,ρ)+ζnd2(yn,ρ)−ζn(1−ζn)d2(T2sn,T1yn)
≤ d2(sn,ρ)−ζn(1−ζn)d2(T2sn,T1yn).

This implies that
ζnηnςn(1− ςn)d2(sn,T1sn)≤ d2(sn,ρ)−d2(zn,ρ)

and
ζn(1−ζn)d2(T2sn,T1yn)≤ d2(sn,ρ)−d2(zn,ρ).

From our assumption and (3.26), we obtain

lim
n→∞

d(T1sn,sn) = 0 (3.27)

and
lim
n→∞

d(T2sn,T1yn) = 0. (3.28)

It follows from (3.27) that
d(xn,sn) ≤ d((1− ςn)tn ⊕ ςnT1sn,sn)

≤ ςnd(T1sn,sn)
→ 0 (as n → ∞).

(3.29)

It follows from (3.27) and (3.29) that

d(yn,sn) ≤ d((1−ηn)T1sn ⊕ηnT1xn,sn)
≤ (1−ηn)d(T1sn,sn)+ηnd(T1xn,sn)
≤ (1−ηn)d(T1sn,sn)+ηnd(T1xn,T1sn)+ηnd(T1sn,sn)
≤ (1−ηn)d(T1sn,sn)+ηnd(xn,sn)+ηnd(T1sn,sn)
→ 0 (as n → ∞).

(3.30)

From (3.27), (3.28) and (3.30), we have

d(T2sn,sn) ≤ d(T2sn,T1yn)+d(T1yn,T1sn)+d(T1sn,sn)
≤ d(T2sn,T1yn)+d(yn,sn)+d(T1sn,sn)
→ 0 (as n → ∞).

(3.31)

From (3.27), (3.31) and Theorem 3.1, we get w ∈ F .
Next, we show that w = v = PF s1. Since sn = PCns1, we have

〈
−−−−−→
s1PCns1,

−−−−−→
PCns1ρ〉 ≥ 0,∀ρ ∈ Cn,

〈−−→s1sn,
−→snρ〉 ≥ 0,∀ρ ∈ Cn. (3.32)

Taking limit in (3.32), we obtain
〈−→s1w,−→wρ〉 ≥ 0,∀ρ ∈ Cn. (3.33)

Since F ⊂ Cn, so w = PF s1.
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4. NUMERICAL EXAMPLE

This section includes an example which assists our main theorems.
Example. Let X = R3 and C = R×R× [0,2]. Let (x,y) ∈ E(G ) iff x1,y1 ≤ 1.5, −1 ≤ x2,y2 ≤ 1 and
.25 ≤ x3,y3 ≤ 1.75 or x = y for all x = (x1,x2,x3),y = (y1,y2,y3) ∈ C . Let mappings T1,T2 : C → C be
defined by

T1x =
(

10x1−1 +9
10

,0,
sin−1(x2 −1)

2
+1

)

and

T2x =
(

1,
tanx2

4
,1
)

for all x = (x1,x2,x3) ∈ C .
Clearly, T1 and T2 are two mappings such that F (T ) = {(1,0,1)}. On the flip side, by taking x =

(2,1,0.18) and y = (1.44,1,0.06), we see that T1 is not nonexpansive, ‖T1x−T1y‖ > 0.7 > ‖x− y‖ and
T2 is not nonexpansive by taking x = (3,1.11,2) and y = (3,1.03,2) as ‖T2x−T2y‖> 0.084 > ‖x− y‖.

It is clear that ρ = (1,0,1) is a point of F . Choosing the values of ζn,ηn,ςn =
3n

4n+1 and stopping criteria
as ‖xn+1 − xn‖< 10−9. By reckoning, we get the sequences {xn} generated by Theorems 3.2–3.4 converge
to the point (1,0,1) of F for Choice 1: x1 = (−1,1,1.95), Choice 2: x1 = (−10,1, .95) and Choice 3:
x1 = (−9,−0.9,1.95). In Tables 1 and 2, comparison of the convergence rate of three modified iterative
schemes has been shown. We see that ρ = (1,0,1) is a point of F . By reckoning, we get the sequences

Table 1. For Choices 1 and 2, comparison for the sequences defined in Theorems 3.2–3.4

Choice 1: (–1, 1, 1.95) Choice 2: (–10, 1, .95)
Iter. No. of iter. Time taken by CPU No. of iter. CPU Time

(sec) (sec)
(i) 187 .0089 202 .0089
(ii) 63 .0029 69 .0031
(iii) 32 .0080 12 .0024

Table 2. For Choice 3, comparison for the sequences defined in Theorems 3.2–3.4

Choice 3: (–9, –0.9, 1.95)
Iter. No. of iter. Time taken by CPU

(sec)
(i) 200 .0101
(ii) 97 .0048
(iii) 11 .0027

{xn} generated by Theorems 3.2–3.4 converge to the point (1,0,1) of F .
Remark.
(1) From figures and tables, it is clear that modified method (iii) (defined in Theorem 3.4) has better conver-
gence rate and needs lower number of iterations than the other two modified methods (i) and (ii) for three
different choices.
(2) The sequences ζn,ηn,ςn are not the optimized parameters, they are fixed for three algorithms (i)–(iii) for
comparison.
(3) The results in the Tables 1–2 depend on mappings T1,T2 and the initialization x1.

{xn} generated by Theorems 3.2–3.4 converge to the point (1,0,1) of F .
Remark.
(1) From figures and tables, it is clear that modified method (iii) (defined in Theorem 3.4) has better conver-
gence rate and needs lower number of iterations than the other two modified methods (i) and (ii) for three
different choices.
(2) The sequences ζn,ηn,ςn are not the optimized parameters, they are fixed for three algorithms (i)–(iii) for
comparison.
(3) The results in the Tables 1–2 depend on mappings T1,T2 and the initialization x1.

Choice 1: (–1, 1, 1.95) Choice 2: (–10, 1, .95)
Iter. No. of iter. Time taken by CPU No. of iter. CPU Time

(sec) (sec)
(i) 187 .0089 202 .0089
(ii) 63 0029 69 0031

Table 1. For Choices 1 and 2, comparison for the sequences defined in Theorems 3.2–3.4

Table 2. For Choice 3, comparison for the sequences defined in Theorems 3.2–3.4

(sec) (sec)
(i) 187 .0089 202 .0089
(ii) 63 .0029 69 .0031
(iii) 32 .0080 12 .0024

Iter. No. of iter. Time taken by CPU

(sec)
(i) 200 .0101
(ii) 97 .0048
(iii) 11 .0027

Choice 3: (–9, –0.9, 1.95)
Iter. No. of iter. Time taken by CPU
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(a) (b) (c)

Fig. 1. Error plots for first (a), second (b) and third (c) choice.

5. CONCLUSIONS

We introduced three iterative schemes by modifying shrinking projection method involving G -nonexpansive
mappings. We proved convergence theorems to obtain common fixed points of G -nonexpansive mappings
and constructed a numerical example which supports our main results and comparison of among three
iterative schemes has been shown.
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