1. Truesdell, C. and Noll, W. The Non-Linear Field Theories of Mechanics. Springer, Berlin, 1965.
2. Gurtin, M. E. Thermodynamics and the possibility of spatial interaction in elastic materials. Arch. Ration. Mech. Anal., 1965, 19, 339–352.
doi:10.1007/BF00253483
3. Acharya, A. and Shawki, T. G. Thermodynamic restrictions on constitutive equations for second-deformation-gradient inelastic behaviour. J. Mech. Phys. Solids, 1995, 43, 1751–1772.
doi:10.1016/0022-5096(95)00054-M
4. Papenfuss, C. and Forest, S. Thermodynamical frameworks for higher grade material theories with internal variables or additional degrees of freedom. J. Non-Equil. Thermodyn., 2006, 31, 319–353.
5. Gurtin, M. E. Configurational Forces as Basic Concepts of Continuum Physics. Springer, New York, 2000.
6. Maugin, G. The Thermomechanics of Nonlinear Irreversible Behaviors (An introduction). World Scientific, Singapore, 1999.
doi:10.1142/9789812796271
7. Ván, P. Weakly nonlocal irreversible thermodynamics. Ann. Phys.-Leipzig, 2003, 12, 146–173.
8. Liu, I-Shih. Entropy flux relation for viscoelastic bodies. J. Elasticity, 2008, 90, 259–270.
doi:10.1007/s10659-007-9142-0
9. Jou, D., Casas-Vázquez, J., and Lebon, G. Extended Irreversible Thermodynamics. Springer, Berlin, 2001.
10. Müller, I. and Ruggeri, T. Rational Extended Thermodynamics. Springer, New York, 1998.
11. Verhás, J. Thermodynamics and Rheology. Akadémiai Kiadó and Kluwer Academic Publishers, Budapest and Dordrecht, 1997.
12. Triani, V., Papenfuss, C., Cimmelli, V. A., and Muschik, W. Exploitation of the Second Law: Coleman-Noll and Liu procedure in comparison. J. Non-Equil. Thermodyn., 2008, 33, 47–60.
13. Muschik, W., Triani, V., and Papenfuss, C. Exploitation of the dissipation inequality, if some balances are missing. J. Mech. Mat. Struct., 2008, 3, 1125–1133.
doi:10.2140/jomms.2008.3.1125
14. Ván, P. Weakly nonlocal non-equilibrium thermodynamics – variational principles and Second Law. In Applied Wave Mathematics (Quak, E. and Soomere, T., eds). Springer, Berlin, 2009, 153–186.
doi:10.1007/978-3-642-00585-5_10
15. Aifantis, E. C. Update on a class of gradient theories. Mech. Mat., 2003, 35, 259–280.
doi:10.1016/S0167-6636(02)00278-8
16. Noll, W. A mathematical theory of the mechanical behavior of continuous media. Arch. Rat. Mech. Anal., 1958/59, 2, 197–226.
doi:10.1007/BF00277929
17. Matolcsi, T. and Ván, P. Can material time derivative be objective? Phys. Lett. A, 2006, 353, 109–112.
doi:10.1016/j.physleta.2005.12.072
18. Matolcsi, T. and Ván, P. Absolute time derivatives. J. Mat. Phys., 2007, 48, 053507–19.
doi:10.1063/1.2719144
19. Fülöp, T. A new interpretation of the kinematics of continua. In New Results in Continuum Physics (Fülöp, T., ed.), Vol. 8 of Notes on Engineering Geology and Rock Mechanics. BME Publisher, Budapest, 2008, Chapter 3, 55–99 (in Hungarian).
20. Ván, P. Material manifolds in nonrelativistic spacetime. In New Results in Continuum Physics (Fülöp, T., ed.), Vol. 8. Mérnökgeológia-Kőzetmechanika Kiskönyvtár. Publishing House of the Budapest University of Technology and Economics, Budapest, 2008, 37–54 (in Hungarian).
21. Pawłow, I. Thermodynamically consistent Cahn–Hilliard and Allen–Cahn models in elastic solids. Disc. Cont. Dyn. Syst., 2006, 15, 1169–1191.
doi:10.3934/dcds.2006.15.1169
22. Ván, P. Internal energy in dissipative relativistic fluids. J. Mech. Mat. Struct., 2008, 3, 1161–1169.
doi:10.2140/jomms.2008.3.1161
23. Ván, P. Exploiting the Second Law in weakly nonlocal continuum physics. Period. Polytech. Mech., 2005, 49, 79–94.
24. Cimmelli, V. A. An extension of Liu procedure in weakly nonlocal thermodynamics. J. Math. Phys., 2007, 48, 113510.
doi:10.1063/1.2804753
25. Mindlin, R. D. Second gradient of strain and surface-tension in linear elasticity. Int. J. Solids Struct., 1965, 1, 417–438.
doi:10.1016/0020-7683(65)90006-5
26. Porubov, A. V., Aero, E. L., and Maugin, G. A. Two approaches to study essential nonlinear and dispersive properties of the internal structure of materials. Phys. Rev. E, 2009, 79, 046608.
doi:10.1103/PhysRevE.79.046608
27. Berezovski, A., Engelbrecht, J., and Maugin, G. A. Generalized thermomechanics with dual internal variables. Arch. Appl. Mech., 2010,
doi: 10.1007/s00419-010-0412-0.
doi:10.1016/j.ijsolstr.2006.05.012