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Abstract. The thermodynamic framework of finite strain viscoelasticity with second order weak nonlocality in the deformation
gradient is investigated. The application of Liu’s procedure leads to a class of third grade elastic materials where the second gradient
of the stress appears in the elastic constitutive relation. Finally the dispersion relation of longitudinal plane waves is calculated in
isotropic materials.
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1. INTRODUCTION

Thermodynamic requirements are important in all theoretical approaches of continuum mechanics. The
classical form of the Clausius–Duhem inequality [1] does not allow higher than first grade elasticity [2]
and plasticity [3] without any further ado. Therefore, new concepts such as higher order stresses
and configurational forces emerged to circumvent this condition and to understand the thermodynamic
compatibility of successful material models [4–6].

In this paper we show that a weakly nonlocal extension of the constitutive state space does not contradict
the Second Law and leads to constitutive relations of higher grade finite strain elasticity and viscoelasticity
that are compatible with rigorous thermodynamic methods and requirements. Our method is based on two
basic observations, which are different from the classical framework of Gurtin [2], namely that
– the entropy flux is a constitutive quantity,
– for higher order weakly nonlocal state spaces the gradient of the balances and other kinematic constraints

result in further constraints on the entropy inequality.
The assumption of a constitutive entropy flux is a straightforward generalization of the Gibbs–Duhem

inequality, and one can prove that in simple cases it leads to the classical form and to the classical results
both in irreversible thermodynamics [7] and in thermoelasticity in particular [8]. This generalization is well
accepted and applied beyond mechanics [9–11]. With the assumption of a constitutive entropy flux Liu’s
and Coleman–Noll procedures are equivalent (see [12] for a proof in a particular case).

It is also remarkable that further constraints in Liu’s procedure result in more general constitutive
functions [13]. Our main result, the thermodynamic admissibility of the dependence of constitutive functions
on space derivatives of the deformation gradient, is the consequence of this general property of the entropy
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inequality. Therefore we do not need to introduce higher order stresses (or any other additional physical
concepts) in advance, but at the end we will see that some of the consequences of our method can be inter-
preted in those terms. The introduction of the gradient of local constraints (e.g. balances) in nonequilibrium
thermodynamics is a mathematical necessity in the case of higher order weakly nonlocal constitutive state
spaces – overlooked by Gurtin in [2] – and has a unifying power to understand the role of the Second Law
in several seemingly different theories of continuum physics (see e.g. [14] and the references therein).

In this paper we apply our method with Liu’s procedure in third grade elasticity ([1], p. 63), where
the constitutive state space depends on the second space derivative of the deformation gradient. Therefore
third grade elasticity is classified as a second order weakly nonlocal theory. We prove the thermodynamic
admissibility of a class of constitutive relations with two remarkable properties:
– the second order derivatives of the deformation appear without explicitly introducing double stress in

advance as an independent theoretical concept,
– the second derivative of the stress is part of the nondissipative stress–strain constitutive relation. This is

similar to the suggestion of Aifantis (see [15] and the references therein).
We also derive a simple dispersion relation of longitudinal plane waves to demonstrate the properties of

the constitutive relation.

2. CONTINUUM IN A PIOLA–KIRCHHOFF FRAMEWORK

All quantities are defined on the reference configuration. The substantial time derivative is denoted by a dot
and the material space derivative is ∂i, where i ∈ {1,2,3}. Higher order derivatives are denoted by more
indices, e.g. ∂i j is the second gradient, χ i is the motion, F i

j = ∂ jχ i is the deformation gradient.
According to the traditional concept of objectivity [16], this kinematic standpoint ensures the objectivity

of the whole treatment as long as the constitutive quantities depend on objective physical quantities.
However, the original mathematical formulation of the concept of objectivity by Noll is questionable [17,18],
and a generalization based on precise spacetime notions and a four-dimensional formalism was suggested
to improve it [19,20]. In this work we do not apply this generalized objective framework, our results are
derived by usual three-dimensional notions. However, we exploit some consequences of this generalization
to simplify our calculation. First of all it will be convenient to work in a Piola–Kirchhoff framework,
where the balances and the physical quantities are interpreted in the reference configuration (see [5,21] for
a similar treatment). The first Piola–Kirchhoff stress will be denoted as a tensor. As we have mentioned
above, a constitutive state space spanned by Noll-objective physical quantities (e.g., right Cauchy–Green
deformation) could ensure the objectivity of the whole treatment. However, it is more convenient to work
with the deformation gradient, the material velocity, and the total energy as basic variables. Moreover, this
choice of state variables is not forbidden by our generalized notion of objectivity. We will partially change
to Noll-objective quantities at the end introducing the internal energy with the usual definition and show a
particular stress–strain relation with a Cauchy deformation measure.

Therefore in our treatment of the constitutive theory of third grade elastic materials the constitutive
state space is based on the following fields: vi,∂ jvi, ∂ jkvi,F i

j,∂kF i
j, ∂klF i

j,e,∂ie. Here vi is the velocity,
F i

j is the deformation gradient, and e is the specific total energy. Our approach is second order weakly
nonlocal in the velocity and the deformation gradient, and first order weakly nonlocal in the energy. It is
usual to avoid introducing a velocity field as an independent variable by working with internal energy and
internal energy balance. However, as the velocity and deformation gradient fields form a single physical
quantity, we find instructive to show that the direct definition of internal energy can be introduced at the end
and that the total energy filtered through Liu’s procedure can give the same results when specified to local
constitutive relations. This is the approach that we have followed in the case of relativistic fluids, where the
Liu procedure was essential to distinguish total and internal energies [22].
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The well-known kinematic relation between the velocity and the deformation gradient

Ḟ i
j−∂ jvi = 0 (1)

is introduced as a constraint for the entropy inequality together with the balances.
The balance of linear momentum is

ρ0v̇i−∂ jT i j = 0i. (2)

Here ρ0 is the material density and T i j is the first Piola–Kirchhoff stress, introduced as a tensor. The balance
of total energy is

ρ0ė+∂iqi = 0, (3)

where qi is the energy flux. As we are working in a second order weakly nonlocal constitutive state space the
derivative of the kinematic relation (1) and the momentum balance (2) are additional constraints according
to the exploitation method of weakly nonlocal continuum theories [23,24]:

∂kḞ i
j−∂k jvi = 0i

jk, (4)

ρ0∂ jv̇i +∂ jkT ik = 0i
j. (5)

The gradient of the energy balance does not give an additional constraint, because the constitutive state
space is first order weakly nonlocal in the energy.

The entropy inequality requires that
ρ0ṡ+∂iJi ≥ 0,

where s is the specific entropy and Ji is the material entropy flux. Here we are looking for restrictions on
the constitutive functions T i j,qi,Ji in terms of the entropy density derivatives. It is important to see that the
derivative of the momentum balance extends the process direction space, which is spanned by the first and
also the second space derivatives of the constitutive state space.

We introduce Λ j
i ,λi,κ,Λ jk

i ,λ j
i Lagrange–Farkas multipliers of equations (1)–(5), respectively.

Therefore the starting point of the Liu procedure is the following inequality:

0≤ρ0ṡ+∂iJi−Λ j
i (Ḟ

i
j−∂ jvi)−λi(ρ0v̇i−∂ jT i j)−κ(ρ0ė+∂iqi)

−Λ jk
i (∂kF i

j−∂k jvi)−λ j
i (ρ0∂ jv̇i +∂k jT ik)

=ρ0
∂ s
∂vi v̇i +ρ0

∂ s
∂∂ jvi ∂ jv̇i +ρ0

∂ s
∂∂ jkvi ∂ jkv̇i +ρ0

∂ s
∂F i

j
Ḟ i

j +ρ0
∂ s

∂∂kF i
j
∂kḞ i

j

+ρ0
∂ s

∂∂klF i
j
∂klḞ i

j +ρ0
∂ s
∂e

ė+ρ0
∂ s

∂∂ie
∂iė

+
∂J j

∂vi ∂ jvi +
∂Jk

∂∂ jvi ∂k jvi +
∂Jl

∂∂k jvi ∂lk jvi +
∂Jk

∂F i
j
∂kF i

j +
∂Jl

∂∂kF i
j
∂lkF i

j

+
∂Jm

∂∂lkF i
j
∂mlkF i

j +
∂Ji

∂e
∂ie+

∂J j

∂∂ie
∂ jie

−κ

(
ρ0ė+

∂q j

∂vi ∂ jvi +
∂qk

∂∂ jvi ∂k jvi +
∂ql

∂∂k jvi ∂lk jvi +
∂qk

∂F i
j
∂kF i

j +
∂ql

∂∂kF i
j
∂lkF i

j

+
∂qm

∂∂lkF i
j
∂mlkF i

j +
∂qi

∂e
∂ie+

∂q j

∂∂ie
∂ jie

)
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−λr

(
ρ0v̇r− ∂T r j

∂vi ∂ jvi− ∂T rk

∂∂ jvi ∂k jvi− ∂T rl

∂∂k jvi ∂lk jvi− ∂T rk

∂F i
j

∂kF i
j−

∂T rl

∂∂kF i
j
∂lkF i

j

− ∂T rm

∂∂lkF i
j
∂mlkF i

j−
∂T ri

∂e
∂ie− ∂T r j

∂∂ie
∂ jie

)
−Λ j

i (Ḟ
i
j−∂ jvi)

−λ s
r

(
ρ0∂sv̇r− ∂T r j

∂vi ∂s jvi−∂ jvi∂s

[
∂T r j

∂vi

]
− ∂T rk

∂∂ jvi ∂sk jvi−∂k jvi∂s

[
∂T rk

∂∂ jvi

]

− ∂T rl

∂∂k jvi ∂slk jvi−∂lk jvi∂s
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∂T rl

∂∂k jvi
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j

∂skF i
j−∂kF i

j∂s
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∂F i
j
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∂∂kF i
j
∂slkF i

j−∂lkF i
j∂s
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∂T rl
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j
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∂∂lkF i
j
∂smlkF i

j−∂mlkF i
j∂s
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∂s jie−∂ jie ∂s

[
∂T r j

∂∂ie

])

−Λ jk
i (∂kḞ i

j−∂k jvi).

The time derivative related Liu equations imply that Lagrange–Farkas multipliers are determined by the
entropy derivatives, and that the specific entropy and the stress do not depend on the highest derivatives of
the constitutive state space s = s(vi,∂ jvi,F i

j,∂kF i
j,e).

Then, the Liu equations related to the highest order space derivatives determine the entropy flux in the
following form

Ji =
∂ s
∂e

qi− ∂ s
∂∂ivr

(
∂T jr

∂e
∂ je+

∂T kr

∂∂lvm ∂lkvm +
∂T kr

∂∂lFn
m

∂lkFn
m

)
+Ki.

Here Ki = Ki(vi,∂ jvi,F i
j,∂kF i

j,e) is the extra entropy flux with the above denoted restricted functional
dependences. Then we introduce several convenient assumptions in order to get a simple and solvable
form of the dissipation inequality. First of all we define the classical heat flux q̂ and also the internal energy
of the third grade viscoelastic material including an isotropic kinetic energy contribution of deformation
gradient rate:

u := e− 1
2

vivi− α1

2
(Ḟ i

i)
2− α2

2
Ḟ i

jḞ
j
i , q̂i := qi + v jT i j.

Moreover, we may observe that a particular choice of the extra entropy flux reduces the dissipation inequality
to a solvable form. Therefore we assume that

Ki :=
∂ s
∂e

v jT i j− ∂ s
∂∂iFk

j
∂ jvk.

Finally the temperature θ is defined by the entropy derivatives ∂ s
∂e = ∂ s

∂u = 1
θ and the free energy as

ψ(F,∇F) := u−θs. Then we obtain

θσS = θ q̂i∂i
1
θ

+∂ jvi

(
T j

i −
∂ψ
∂F i

j
−α1∂lkT lkδ j

i −α2∂ j
kT k

i +∂k
∂ψ

∂∂kF i
j

)
≥ 0. (6)

The first two terms in the parentheses of the above expression are the classical terms from second grade
elasticity. The very last term in (6) resembles the double stress relation that one can get by virtual power
techniques.
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In the nondissipative case, assuming constant material parameters, we get a constitutive relation of third
grade elasticity in the following form

T−∇ · (α1(∇ ·T)I+α2∇T) =
∂ψ
∂F

−∇ · ∂ψ
∂∇F

. (7)

3. SIMPLE WAVES

We may calculate the dispersion relation of a one-dimensional plane wave in the small strain approximation
in order to check some consequences of the above stress–strain relation.

Let us assume a usual isotropic quadratic free energy for symmetric strains ε i
j = 1

2(F i
j + F j

i − 2δ i
j),

that is second order isotropic quadratic also in the gradient of the symmetric strains. Then, according
to representation theorems, only two additional material parameters a1,a2 appear in the free energy
function [25]

ψ(ε i
j,∂kε i

j) =
λ
2

(ε i
i )

2 + µε i
jε i

j +
a1

2
∂iε j

j ∂
iεk

k +
a2

2
∂iε j

k ∂ iεk
j .

Then we get

T j
i −α1∂k∂lT lkδ j

i −α2∂k∂ jT k
i = λεk

k δ j
i +2µε j

i −a1(∂ k
k ε l

l )δ
j

i −a2∂ k
k (ε j

i ).

Let us investigate the simplest one-dimensional case and reduce the treatment to one component of the
above tensorial equation. Introducing the notation T = T 11 and ε = ε11 and also denoting ∂1 by a dash we
get

T −αT ′′ = λ̂ ε−aε ′′,

where α = α1 + α2, λ̂ = λ + 2µ , and a = a1 + a2. This constitutive relation is coupled to the balance of
momentum that is in our case

ρ0ε̈−T ′′ = 0.

Assuming constant material parameters, we get the following dispersion relation

ω2 =
k2(λ̂ +ak2)
ρ0(1+αk2)

.

The characteristic feature of this dispersion relation is that the small wavelength and large wavelength
limits result in finite acoustic phase velocities:

lim
k→0

ω(k)
k

=
√

λ̂/ρ0

and

lim
k→∞

ω(k)
k

=
√

a/(αρ0)

as demonstrated in Fig. 1. This kind of behaviour is a property of the double wave equation [26]. Double
wave equations are introduced by microstructural considerations, e.g. in microstrain theories or internal
variable theories [25,27].
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Fig. 1. The square of the phase velocity v2 = (ω(k)/k)2 with the parameter values ρ0 = 1, λ̂ = 1, α = 1, and a = 2.

4. SUMMARY

In this paper we investigated a weakly nonlocal extension of viscoelasticity up to second order in the
deformation gradient. The entropy flux was considered as a constitutive quantity and we applied the Liu
procedure introducing also the gradients of the balance of momentum and of the kinematic relation (1) as
constraints on the entropy balance.

The calculations were performed in the Piola–Kirchhoff framework. The constitutive state space
was chosen according to the generalization of the Noll principle of frame indifference introducing the
components of the velocity–deformation gradient mixed four-tensor and their first and second space
derivatives as constitutive variables.

A complete solution of Liu’s equations was calculated and a particular form of the entropy flux and
the dissipation inequality were obtained. In order to solve the dissipation inequality, we introduced some
simplifications. In particular, a quadratic form of the kinetic energy and some further related rearrangements
resulted in a form where Onsagerian fluxes and forces can be identified. The constitutive relation of the
nondissipative mechanical material contains the gradients of the pressure in addition to the classical terms
and the usual form of the constitutive relation of the double stress appeared without postulating such term
in advance.

It is important to note that the extension of the constitutive state space toward higher order gradients
does not change the obtained form of (6) as long as only the first derivatives of (1) and (2) are introduced as
additional constraints. This extension results in simple explicit solutions of the nondissipative differential
stress–deformation relation and then (7) can be considered as a constitutive relation of third grade elasticity.

We calculated also a one-dimensional dispersion relation and concluded that it was similar to the
dispersion relation of some microstructured materials as one could expect in the case of higher grade solids
(see e.g. [28]).

As we mentioned in the Introduction, stress–strain relations similar to (7) were already proposed in
the literature [15]. However, there the motivation was to remove stress singularities with a kind of ad hoc
“reaction diffusion” form. Here we showed that this kind of extension is compatible with a weakly nonlocal
thermodynamic framework, there are natural boundary conditions coming from the requirement of vanishing
entropy flux, and a physical origin of stress derivative terms is the modified (isotropic) kinetic energy related
to the rate of the deformation gradient.
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Notes on Engineering Geology and Rock Mechanics. BME Publisher, Budapest, 2008, Chapter 3, 55–99 (in Hungarian).
20. Ván, P. Material manifolds in nonrelativistic spacetime. In New Results in Continuum Physics (Fülöp, T., ed.), Vol. 8.
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Kolmandat järku lõpliku deformatsiooni elastsuse termodünaamiline käsitlus

Péter Ván ja Christina Papenfuss

On uuritud teist järku nõrga mittelokaalsusega lõplike deformatsioonidega viskoelastsusteooria termodünaa-
milist raamistikku. Liu meetodi rakendamine viib teist järku elastsete materjalide klassini, mille elastne
olekuvõrrand sisaldab teist pingegradienti. On välja arvutatud tasandpikilainete dispersiooniseos.


