1. Araruna, F. D. and Zuazua, E. Controllability of the Kirchhoff system for beams as a limit of the Mindlin–Timoshenko system. SIAM J. Cont. Optim., 2008, 47, 1909–1938.
doi:10.1137/060659934
2. Araruna, F. D., Braz e Silva, P., and Zuazua, E. Asymptotic limits and stabilization for the 1D nonlinear Mindlin–Timoshenko system. J. Syst. Sci. Complexity (to appear).
3. Doyle, J. F. Wave Propagation in Structures. Springer-Verlag, New York, 1997.
4. Engelbrecht, J., Berezovski, A., Pastrone, F., and Braun, M. Waves in microstructured materials and dispersion. Phil. Mag., 2005, 85, 4127–4141.
doi:10.1080/14786430500362769
5. Favini, A., Horn, M. A., Lasiecka, I., and Tartaru, D. Global existence, uniqueness and regularity of solutions to a von Kármán system with nonlinear boundary dissipation. Diff. Integ. Eqns, 1996, 9, 267–294.
6. Lagnese, J. E. Boundary Stabilization of Thin Plates. SIAM, 1989.
7. Lagnese, J. E. and Leugering, G. Uniform stabilization of a nonlinear beam by nonlinear boundary feedback. J. Diff. Eqns, 1991, 91, 355–388.
doi:10.1016/0022-0396(91)90145-Y
8. Lagnese, J. E. and Lions, J.-L. Modelling Analysis and Control of Thin Plates. RMA 6, Masson, Paris, 1988.
9. Pazoto, A., Perla Menzala, G., and Zuazua, E. Stabilization of Berger–Timoshenko’s equation as limit of the uniform stabilization of the von Kármán system of beams and plates. Math. Model. Numer. Anal., 2002, 36, 657–691.
doi:10.1051/m2an:2002029
10. Perla Menzala, G. and Zuazua, E. Explicit exponential decay rates for solutions of von Kármán’s system of thermoelastic plates. C. R. Acad. Sci. Paris, 1997, 324, 49–54.
11. Perla Menzala, G. and Zuazua, E. The beam equation as a limit of 1-D nonlinear von Kármán model. Appl. Math. Lett., 1999, 12, 47–52.
doi:10.1016/S0893-9659(98)00125-6
12. Perla Menzala, G. and Zuazua, E. Timoshenko’s beam equation as limit of a nonlinear one-dimensional von Kármán system. Proc. Roy. Soc. Edinburgh, 2000, 130A, 855–875.
doi:10.1017/S0308210500000470
doi:10.1016/S0021-7824(00)00149-5