The problem of transmission of wave energy in strongly inhomogeneous media is discussed with application to long water waves propagating in a basin with a quartic bottom profile. Using the linear shallow-water theory it is shown that the wave component of the flow disturbance is described by a travelling wave solution with an amplitude and phase that vary with distance. This means that the kinetic part of the wave energy propagates over large distances without reflection. Conditions for wave breaking in the nearshore are found from the asymptotic solution of the nonlinear shallow-water theory. Wave runup on a vertical wall is also studied for a quartic bottom profile.
Bluman, G. and Kumei, S. 1987. On invariance properties of the wave equation. J. Math. Phys., 28, 307–318.
doi:10.1063/1.527659
Brekhovskikh, L. M. 1980. Waves in Layered Media. Academic Press, New York.
Burger, W. 1967. A note on the breaking of waves on non-uniformly sloping beach. J. Mech. Math., 16(10), 1131–1142.
Caputo, J.-G. and Stepanyants, Yu. A. 2003. Bore formation, evolution and disintegration into solitons in shallow inhomogeneous channels. Nonlinear Proc. Geoph., 10, 407–424.
doi:10.5194/npg-10-407-2003
Clements, D. L. and Rogers, C. 1975. Analytic solution of the linearized shallow-water wave equations for certain continuous depth variations. J. Aust. Math. Soc., B 19, 81–94.
Choi, B. H., Pelinovsky, E., Kim, D. C., Didenkulova, I., and Woo, S. B. 2008. Two- and three-dimensional computation of solitary wave runup on non-plane beach. Nonlinear Proc. Geoph., 15, 489–502.
doi:10.5194/npg-15-489-2008
Didenkulova, I. 2009. Nonlinear long-wave deformation and runup in a basin of varying depth. Nonlinear Proc. Geoph., 16(1), 23–32.
doi:10.5194/npg-16-23-2009
Didenkulova, I. and Pelinovsky, E. 2009. Non-dispersive traveling waves in strongly inhomogeneous water channels. Phys. Lett. A, 373(42), 3883–3887.
doi:10.1016/j.physleta.2009.08.051
Didenkulova, I., Pelinovsky, E., and Soomere, T. 2008. Exact travelling wave solutions in strongly inhomogeneous media. Estonian J. Eng., 14, 220–231.
doi:10.3176/eng.2008.3.03
Didenkulova, I., Pelinovsky, E., and Soomere, T. 2009. Long surface wave dynamics along a convex bottom. J. Geophys. Res. – Oceans, 114, C07006.
doi:10.1029/2008JC005027
Dingemans, M. W. 1996. Water Wave Propagation over Uneven Bottom. World Scientific, Singapore.
Engelbrecht, J. K., Fridman, V. E., and Pelinovsky, E. N. 1988. Nonlinear Evolution Equations (Pitman Research Notes in Mathematics Series, No. 180). Longman, London.
Ginzburg, V. L. 1970. Propagation of Electromagnetic Waves in Plasma. Pergamon Press, New York.
Grimshaw, R., Pelinovsky, D., and Pelinovsky, E. 2010. Homogenization of the variable-speed wave equation. Wave Motion.
doi:10.1016/j.wavemoti.2010.03.001
Gurtin, M. E. 1975. On the breaking of water waves on a sloping beach of arbitrary shape. Quart. Appl. Math., 33, 187–189.
Ibragimov, N. H. and Rudenko, O. V. 2004. Principle of an a priori use of symmetries in the theory of nonlinear waves. Acoust. Phys., 50, 406–419.
doi:10.1134/1.1776218
Mei, C. C., Stiassnie, M., and Yue, D. K.-P. 2005. Theory and Applications of Ocean Surface Waves. World Scientific, Singapore.
Magaard, L. 1962. Zur Berechnung interner Wellen in Meeresräumen mit nicht-ebenen Böden bei einer speziellen Dichteverteilung. Kiel. Meeresforsch., 18, 161–183.
Pelinovsky, E. N. 1982. Nonlinear Dynamics of Tsunami Waves. Applied Physics Institute Press, Gorky.
Synolakis, C. E. 1987. The runup of solitary waves. J. Fluid Mech., 185, 523–545.
doi:10.1017/S002211208700329X
Varley, E., Venkataraman, R., and Cumberbatch, E. 1971. The propagation of large amplitude tsunamis across a basin of changing depth. I. Off-shore behaviour. J. Fluid Mech., 49, 775–801.
doi:10.1017/S0022112071002362