ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Illitization of the lower Cambrian (Terreneuvian) Blue Clay in the northern Baltic Palaeobasin; pp. 200–213
PDF | 10.3176/earth.2020.14

Authors
Kalle Kirsimäe, Peeter Somelar, Argo Jõeleht
Abstract

The clay mineral composition of the lower Cambrian (Terreneuvian) Blue Clay (BC) in the northern Baltic Palaeobasin was studied. The proportion of illite in mixed-layer illite-smectite in the BC increases gradually from ca 85% in northern Estonia to ca 92% in central Latvia with the present burial depth increasing from a few hundred metres to ca 1000 m. The high level of illitization suggests a mature diagenetic grade of the sediments, which is typically achieved with burial at several kilometres. However, uncompact nature and thermally immature organic material suggest only shallow burial and maximum palaeotemperatures not exceeding 50 °C. The smectite-to-illite transformation in the BC was described using a kinetic modelling to assess the constraints on burial-driven illitization. Modelling results show that the present illitization level is possible to achieve by assuming burial during the Devonian to Permian prior to the erosion in the Mesozoic. The thickness of eroded sediments in the northern part of the basin was in this case only about 400–800 m. The smectite-to-illite transformation process in the BC in the northern Baltic Palaeobasin was controlled rather by time than by temperature.

References

Bethke, C. M. & Altaner, S. P. 1986. Layer-by-layer mechanism of smectite illitization and application to a New Rate Law. Clays and Clay Minerals34, 136–145.
https://doi.org/10.1346/CCMN.1986.0340204

Bogdanova, S., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L. & EUROBRIDGE and POLONAISE Working Groups. 2006. EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. Geological Society, London, Memoirs32, 599–625.
https://doi.org/10.1144/GSL.MEM.2006.032.01.36

Brangulis, A., Kala, E. & Kisnerius, J. 1982. Palaeozoic System. In Geology of the Soviet Baltic Republics (Grigelis, A., ed.), pp. 34–127. Nedra, Leningrad [in Russian].

Buatier, M. D., Peacor, D. R. & Oneil, J. R. 1992. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution crystallization at low temperature. Clays and Clay Minerals40, 65–80.
https://doi.org/10.1346/CCMN.1992.0400108

Buhmann, C. 1992. Smectite-to-illite conversion in a geothermally and lithologically complex Permian sedimentary sequence. Clays and Clay Minerals40, 53–64.
https://doi.org/10.1346/CCMN.1992.0400107

Chaudhuri, S., Srodon, J. & Clauer, N. 1999. K-Ar dating of illitic fractions of Estonian ‟blue clay” treated with alkylam­monium cations. Clays and Clay Minerals47, 96–102.
https://doi.org/10.1346/CCMN.1999.0470110

Clauer, N., Zwingmann, H. & Gorokhov, I. M. 2003. Postdepositional evolution of platform claystones based on a simulation of thermally induced diffusion of radiogenic Ar-40 from diagenetic illite. Journal of Sedimentary Research73, 58–63.
https://doi.org/10.1306/061002730058

Cuadros, J. 2006. Modeling of smectite illitization in burial diagenesis environments. Geochimica et Cosmochimica Acta70, 4181–4195.
https://doi.org/10.1016/j.gca.2006.06.1372

Cuadros, J. & Linares, J. 1996. Experimental kinetic study of the smectite-to-illite transformation. Geochimica et Cosmochimica Acta60, 439–453.
https://doi.org/10.1016/0016-7037(95)00407-6

Drits, V. A., Lindgreen, H., Sakharov, B. A., Jakobsen, H. J., Fallick, A. E., Salyn, A. L., Dainyak, L. G., Zviagina, B. B. & Barfod, D. N. 2007. Formation and transformation of mixed-layer minerals by tertiary intrusives in Cretaceous mudstones, West Greenland. Clays and Clay Minerals55, 260–283.
https://doi.org/10.1346/CCMN.2007.0550304

Eberl, D. & Hower, J. 1976. Kinetics of illite formation. Geological Society of America Bulletin87, 1326–1330.
https://doi.org/10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2

Eensaar, J., Gaškov, M., Pani, T., Sepp, H., Somelar, P. & Kirsimäe, K. 2017a. Hydrothermal fracture mineralization in the stable cratonic northern part of the Baltic Paleobasin: sphalerite fluid inclusion evidence. GFF139, 52–62.
https://doi.org/10.1080/11035897.2016.1196499

Eensaar, J., Pani, T., Gaškov, M., Sepp, H. & Kirsimäe, K. 2017b. Stable isotope composition of hypogenic speleothem calcite in Kalana (Estonia) as a record of microbial methanotrophy and fluid evolution. Geological Magazine154, 57–67.
https://doi.org/10.1017/S0016756815000928

Elliott, W. C. & Matisoff, G. 1996. Evaluation of kinetic models for the smectite to illite transformation. Clays and Clay Minerals44, 77–87.
https://doi.org/10.1346/CCMN.1996.0440107

Ferrage, E., Vidal, O., Mosser-Ruck, R., Cathelineau, M. & Cuadros, J. 2011. A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy. American Mineralogist96, 207–223.
https://doi.org/10.2138/am.2011.3587

Freed, R. L. & Peacor, D. R. 1989. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Minerals24, 171–180.
https://doi.org/10.1180/claymin.1989.024.2.05

Freed, R. L. & Peacor, D. R. 1992. Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates. Journal of Sedimentary Petrology62, 220–234.
https://doi.org/10.1306/D42678CA-2B26-11D7-8648000102C1865D

Gaškov, M., Sepp, H., Pani, T., Paiste, P. & Kirsimäe, K. 2017. Barite mineralization in Kalana speleothems, Central Estonia: Sr, S and O isotope characterization. Estonian Journal of Earth Sciences66, 130–141.
https://doi.org/10.3176/earth.2017.10

Geyer, G. 2019. A comprehensive Cambrian correlation chart. Episodes42, 321–332.
https://doi.org/10.18814/epiiugs/2019/019026

Gharrabi, M. & Velde, B. 1995. Clay mineral evolution in the Illinois Basin and its causes. Clay Minerals30, 353–364.
https://doi.org/10.1180/claymin.1995.030.4.08

Gorokhov, I. M., Clauer, N., Turchenko, T. L., Melnikov, N. N., Kutyavin, E. P., Pirrus, E. & Baskakov, A. V. 1994. Rb–Sr systematics of Vendian–Cambrian claystones from the east European Platform: implications for a multi-stage illite evolution. Chemical Geology112, 71–89.
https://doi.org/10.1016/0009-2541(94)90105-8

Gorokhov, I. M., Melnikov, N. N., Turchenko, T. L. & Kutyavin, E. P. 1997. Rb–Sr systematics of clay fractions in Lower-Riphean argillites: Ust-Il´inskaya Formation, Anabar Massif, northern Siberia. Lithology and Mineral Resources5, 530–539.

Grotek, I. 2006. Thermal maturity of organic matter from the sedimentary cover deposits from Pomeranian part of the TESZ, Baltic Basin and adjacent area. Prace Państwowego Instytutu Geologicznego186, 253–270.

Hagenfeldt, S. 1996. Lower Palaeozoic acritarchs as indicators of heat flow burial depth of sedimentary sequences in Scandinavia. Acta Universitatis Carolinae, Geologica40, 413–424.

Hillier, S., Matyas, J., Matter, A. & Vasseur, G. 1995. Illite/smectite diagenesis and its variable correlation with vitrinite reflectance in the Pannonian Basin. Clays and Clay Minerals43, 174–183.
https://doi.org/10.1346/CCMN.1995.0430204

Hoffman, J. & Hower, J. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A. In Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., eds), pp. 55–79. SEPM Special Publication, SEPM Society for Sedimentary Geology.
https://doi.org/10.2110/pec.79.26.0055

Huang, W. L., Longo, J. M. & Pevear, D. R. 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals41, 162–177.
https://doi.org/10.1346/CCMN.1993.0410205

Huggett, J. M. & Cuadros, J. 2005. Low-temperature illitization of smectite in the late eocene and early oligocene of the Isle of Wight (Hampshire basin), U.K. American Mineralogist90, 1192–1202.
https://doi.org/10.2138/am.2005.1674

Ijiri, A., Tomioka, N., Wakaki, S., Masuda, H., Shozugawa, K., Kim, S., Khim, B. K., Murayama, M., Matsuo, M. & Inagaki, F. 2018. Low-temperature clay mineral dehydration contributes to porewater dilution in Bering Sea Slope subseafloor. Frontiers in Earth Science6.
https://doi.org/10.3389/feart.2018.00036

Isozaki, Y., Põldvere, A., Bauert, H., Nakahata, H., Aoki, K., Sakata, S. & Hirata, T. 2014. Provenance shift in Cambrian mid-Baltica: detrital zircon chronology of Ediacaran–Cambrian sandstones in Estonia. Estonian Journal of Earth Sciences63, 251–256.
https://doi.org/10.3176/earth.2014.27

Japsen, P., Green, P. F., Bonow, J. M. & Erlstrom, M. 2016. Episodic burial and exhumation of the southern Baltic Shield: Epeirogenic uplifts during and after break-up of Pangaea. Gondwana Research35, 357–377.
https://doi.org/10.1016/j.gr.2015.06.005

Kim, J., Dong, H. L., Seabaugh, J., Newell, S. W. & Eberl, D. D. 2004. Role of microbes in the smectite-to-illite reaction. Science303(5659), 830–832.
https://doi.org/10.1126/science.1093245

Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H., Niin, M. & Urtson, K. 2009. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences58, 219–228.
https://doi.org/10.3176/earth.2009.4.01

Kirsimäe, K. & Jørgensen, P. 2000. Mineralogical and Rb-Sr isotope studies of low-temperature diagenesis of Lower Cambrian clays of the Baltic paleobasin of North Estonia. Clays and Clay Minerals48, 95–105.
https://doi.org/10.1346/CCMN.2000.0480112

Kirsimäe, K., Jørgensen, P. & Kalm, V. 1999a. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals34, 151–163.
https://doi.org/10.1180/claymin.1999.034.1.16

Kirsimäe, K., Kalm, V. & Jørgensen, P. 1999b. Diagenetic transformation of clay minerals in Lower Cambrian argillaceous sediments of North Estonia. Proceedings of the Estonian Academy of Sciences, Geology48, 15–34. 
https://doi.org/10.1180/claymin.1999.034.1.16

Kohn, B. P., Lorencak, M., Gleadow, A. J. W., Kohlmann, F., Raza, A., Osadetz, K. G. & Sorjonen-Ward, P. 2009. A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. In Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models (Lisker, F., Ventura, B. & Glasmacher, U. A., eds), Geological Society, London Special Publications324, 193–216.
https://doi.org/10.1144/SP324.15

Koo, T. H., Lee, G. & Kim, J. W. 2016. Biogeochemical dissolution of nontronite by Shewanella oneidensis MR-1: Evidence of biotic illite formation. Applied Clay Science134, 13–18.
https://doi.org/10.1016/j.clay.2016.03.030

Kukkonen, I. T. & Jõeleht, A. 1996. Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope. Tectonophysics255, 25–45.
https://doi.org/10.1016/0040-1951(95)00131-X

Kurnosov, V. B., Sakharov, B. A. & Blinova, E. V. 2016. Clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin (Gulf of California). Lithology and Mineral Resources51, 243–261.
https://doi.org/10.1134/S0024490216040040

Kuršs, V. 1992. Devonian Terrigenous Sedimentation on the Main Devonian Field. Zinatne, Riga, 208 pp.

Lanson, B. 1997. Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals45, 132–146.
https://doi.org/10.1346/CCMN.1997.0450202

Larson, S. A. & Tullborg, E. L. 1998. Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb concordia. Geology26, 919–922.
https://doi.org/10.1130/0091-7613(1998)026<0919:WBSZYL>2.3.CO;2

Larson, S. A., Tullborg, E. L., Cederbom, C. & Stiberg, J. P. 1999. Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology. Terra Nova11, 210–215.
https://doi.org/10.1046/j.1365-3121.1999.00249.x

Lidmar-Bergstrom, K., Bonow, J. M. & Japsen, P. 2013. Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change100, 153–171.
https://doi.org/10.1016/j.gloplacha.2012.10.015

Mändar, H., Vajakas, T., Telsche, J. & Dinnebier, R. 1996. AXES1.4 – a program for the preparation of parameter input files for FULLPROF. Journal of Applied Crystallography29, 304–304.
https://doi.org/10.1107/S0021889895014993

Meidla, T. 2017. Ediacaran and Cambrian stratigraphy in Estonia: an updated review. Estonian Journal of Earth Sciences66, 152–160.
https://doi.org/10.3176/earth.2017.12

Mens, K. & Pirrus, E. 1986. Stratigraphical characteristics and development of Vendian–Cambrian Boundary Beds on the East European Platform. Geological Magazine123, 357–360.
https://doi.org/10.1017/S0016756800033446

Mens, K. & Pirrus, E. 1997. Cambrian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 39–51. Estonian Academy Publishers, Tallinn.

Meunier, A. & Velde, B. D. 2004. Illite: Origins, Evolution and Metamorphism. Springer-Verlag, Berlin, Heidelberg, New York, 288 pp.

Murrell, G. R. & Andriessen, P. A. M. 2004. Unravelling a long-term multi-event thermal record in the cratonic interior of southern Finland through apatite fission track thermochronology. Physics and Chemistry of the Earth29, 695–706.
https://doi.org/10.1016/j.pce.2004.03.007

Nehring-Lefeld, M., Modliński, Z. & Swadowska, E. 1997. Thermal evolution of the Ordovician in the western margin of the East-European Platform: CAI and R0 data. Geological Quarterly41, 129–138.

Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A., Bembinova, E. Y. & Shalimov, I. V. 1996. Late Precambrian to Triassic history of the East European Craton: Dynamics of sedimentary basin evolution. Tectonophysics268, 23–63.
https://doi.org/10.1016/S0040-1951(96)00228-4

Paškevicius, J. 1997. The Geology of the Baltic Republics. Lietuvos geologijos tarnyba, Vilnius, 387 pp.

Pehr, K., Love, G. D., Kuznetsov, A., Podkovyrov, V., Junium, C. K., Shumlyanskyy, L., Sokur, T. & Bekker, A. 2018. Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nature Communications9.
https://doi.org/10.1038/s41467-018-04195-8

Perens, R. & Vallner, L. 1997. Water-bearing formation. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 137–145. Estonian Academy Publishers, Tallinn.

Plancon, A. & Drits, V. A. 2000. Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clays and Clay Minerals48, 57–62.
https://doi.org/10.1346/CCMN.2000.0480107

Pollastro, R. M. 1993. Considerations and applications of the illite-smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals41, 119–133.
https://doi.org/10.1346/CCMN.1993.0410202

Puura, V., Vaher, R. & Tuuling, I. 1999. Pre-Devonian landscape of the Baltic Oil-Shale Basin, NW of the Russian Platform. Geological Society Special Publication162, 75–83.
https://doi.org/10.1144/GSL.SP.1999.162.01.06

Renac, C. & Meunier, A. 1995. Reconstruction of palaeothermal conditions in a passive margin using illite-smectite mixed-layer series (Ba1 scientific deep drill-hole, Ardeche, France). Clay Minerals30, 107–118.
https://doi.org/10.1180/claymin.1995.030.2.03

Roberson, H. E. & Lahann, R. W. 1981. Smectite to illite conversion rates – effects of solution chemistry. Clays and Clay Minerals29, 129–135.
https://doi.org/10.1346/CCMN.1981.0290207

Rozanov, A. Y. & Łydka, K. (eds). 1987. Palaeogeography and Lithology of the Vendian and Cambrian of the Western East-European Platform. Wydawnictwa Geologiczne, Warsaw, 114 pp.

Sachsenhofer, R. F., Rantitsch, G., Hasenhuttl, C., Russegger, B. & Jelen, B. 1998. Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Minerals33, 523–537.

Sakharov, B. A., Lindgreen, H., Salyn A. L. & Drits, V. A. 1999. Mixed-layer kaolinite-illite-vermiculite in North Sea shales. Clay Minerals34, 333–344.
https://doi.org/10.1180/000985599546136

Sandler, A. & Saar, H. 2007. R ≥ 1-type illite-smectite formation at near-surface temperatures. Clay Minerals42, 245–253.
https://doi.org/10.1180/claymin.2007.042.2.09

Schoonmaker, J., Mackenzie, F. T. & Speed, R. C. 1986. Tectonic implications of illite/smectite diagenesis, Barbados ac­cretionary prism. Clays and Clay Minerals34, 465–472.
https://doi.org/10.1346/CCMN.1986.0340413

Šliaupa, S. & Hoth, P. 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. In The Baltic Sea Basin (Harff, J., Björck, S. & Hoth, P., eds), pp. 13–51. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-17220-5_2

Somelar, P., Kirsimäe, K. & Srodon, J. 2009. Mixed-layer illite-smectite in the Kinnekulle K-bentonite, northern Baltic Basin. Clay Minerals44, 455–468.
https://doi.org/10.1180/claymin.2009.044.4.455

Somelar, P., Kirsimäe, K., Hints, R. & Kirs, J. 2010. Illitization of Early Paleozoic K-bentonites in the Baltic Basin: decoupling of burial- and fluid-driven processes. Clays and Clay Minerals58, 388–398.
https://doi.org/10.1346/CCMN.2010.0580309

Zdanavičiūtė, O. 1997. New data on thermal maturity of organic matter in source rocks. Litosfera1, 76–79 [in Lithuanian].

Zeck, H. P., Andriessen, P. A. M., Hansen, K., Jensen, P. K. & Rasmussen, B. L. 1988. Paleozoic paleo-cover of the southern part of the Fennoscandian Shield fission-track constraints. Tectonophysics149, 61–66.
https://doi.org/10.1016/0040-1951(88)90118-7

Zhang, G. X., Dong, H. L., Kim, J. W. & Eberl, D. D. 2007a. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist92, 1411–1419.
https://doi.org/10.2138/am.2007.2498

Zhang, G. X., Kim, J. W., Dong, H. L. & Sommer, A. J. 2007b. Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer. American Mineralogist92, 1401–1410.
https://doi.org/10.2138/am.2007.2331

Ziegler, P. A. 1987. Evolution of the Arctic–North Atlantic borderlands. In Petroleum Geology of North West Europe (Brooks, J. & Glennie, K. W., eds), pp. 1201–1204. Graham and Trotman, London.

Talyzina, N. M. 1998. Fluorescence intensity in Early Cambrian acritarchs from Estonia. Review of Palaeobotany and Palynology100, 99–108.
https://doi.org/10.1016/S0034-6667(97)00059-6

Talyzina, N. M., Moldowan, J. M., Johannisson, A. & Fago, F. J. 2000. Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Review of Palaeobotany and Palynology108, 37–53.
https://doi.org/10.1016/S0034-6667(99)00032-9

Tänavsuu-Milkeviciene, K., Plink-Björklund, P., Kirsimäe, K. & Ainsaar, L. 2009. Coeval versus reciprocal mixed carbonate–siliciclastic deposition, Middle Devonian Baltic Basin, Eastern Europe: implications from the regional tectonic development. Sedimentology56, 1250–1274.
https://doi.org/10.1111/j.1365-3091.2008.01032.x

Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A. & Cocks, L. R. M. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews114, 325–368.
https://doi.org/10.1016/j.earscirev.2012.06.007

Tuuling, I. 2019. The Leba Ridge–Riga–Pskov Fault Zone – a major East European Craton interior dislocation zone and its role in the early Palaeozoic development of the platform cover. Estonian Journal of Earth Sciences68, 161–189.
https://doi.org/10.3176/earth.2019.12

Valverde-Vaquero, P., Dorr, W., Belka, Z., Franke, W., Wiszniewska, J. & Schastok, J. 2000. U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth and Planetary Science Letters184, 225–240.
https://doi.org/10.1016/S0012-821X(00)00312-5

Velde, B. 1995. Use of the smectite to illite conversion reaction model – effects of order of magnitude. Bulletin Des Centres De Recherches Exploration-Production Elf Aquitaine19, 235–242.

Velde, B. & Espitalie, J. 1989. Comparison of kerogen maturation and illite/smectite composition in diagenesis. Journal of Petroleum Geology12, 103–110.
https://doi.org/10.1111/j.1747-5457.1989.tb00223.x

Velde, B. & Vasseur, G. 1992. Estimation of the diagenetic smectite to illite transformation in time-temperature space. American Mineralogist77, 967–976.

Wei, H., Roaldset, E. & Bjoroy, M. 1996. Parallel reaction kinetics of smectite to illite conversion. Clay Minerals31, 365–376.
https://doi.org/10.1180/claymin.1996.031.3.07

Whitney, G. & Northrop, H. R. 1988. Experimental investigation of the smectite to illite reaction – dual reaction-mechanisms and oxygen-isotope systematics. American Mineralogist73, 77–90.

Back to Issue