ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Ultrastructures of porostromate microproblematica from a Mulde Event (Homerian, Silurian) bioherm in Podolia, Western Ukraine; pp. 24–30
PDF | doi: 10.3176/earth.2015.05

Authors
Ariane Castagner, Emilia Jarochowska, Axel Munnecke, Andre Desrochers
Abstract

The Mulde Event (Homerian, Wenlock) of the Silurian is characterized by a positive δ13C isotope excursion, a stepwise extinction of the hemipelagic fauna and an increase in non-skeletal deposits thought to be microbial, proliferating in shallow marine environments. There is little known about whether the proliferation of microbialites is due to reduced grazing, increased seawater saturation state or an increase in nutrient supply. We have studied a Mulde Event-associated buildup from the Muksha Formation in Bagovytsya, Podolia, Western Ukraine. This buildup differs from a typical Silurian skeletal reef in its low abundance of rugose and favositid corals. The framework of this reef is dominated by stromatoporoids, heliolitid corals and calcimicrobes, the last ones encrusting the stromatoporoids and shells and also forming oncoids. Several microproblematica are present, including Girvanella, Rothpletzella and Hedstroemia, along with Ortonella-like porostromate problematica. This study attempts to further identify the Ortonella-like porostromate problematica and Hedstroemia through SEM analyses which have revealed a recrystallized structure with microdolomite, indicating an originally high-Mg calcite composition. This suggests a red algal affinity or possibly a microbial origin. Our observations may help to constrain the environmental controls on the development of microbial- and microproblematica-dominated deposits during the Mulde Event.

References

Calner, M. 2005a. Silurian carbonate platforms and extinction events – ecosystem changes exemplified from Gotland, Sweden. Facies, 51, 584–591.
http://dx.doi.org/10.1007/s10347-005-0050-0

Calner, M. 2005b. A Late Silurian extinction event and anachronistic period. Geology, 33, 305–308.
http://dx.doi.org/10.1130/0091-7613-33.1.e92

Calner, M. & Jeppsson, L. 2003. Carbonate platform evolution and conodont stratigraphy during the middle Silurian Mulde Event, Gotland, Sweden. Geological Magazine, 140, 173–203.
http://dx.doi.org/10.1017/S0016756802007070

Cocks, L. R. M. & Torsvik, T. H. 2005. Baltica from the late Precambrian to mid-Palaeozoic times: the gain and loss of a terrane’s identity. Earth-Science Reviews, 72, 39–66.
http://dx.doi.org/10.1016/j.earscirev.2005.04.001

Cramer, B. D., Condon, D. J., Söderlund, U., Marshall, C., Worton, G. J., Thomas, A. T., Calner, M., Ray, D. C., Perrier, V., Boomer, I., Patchett, P. J. & Jeppsson, L. 2012. U–Pb (zircon) age constraints on the timing and duration of Wenlock (Silurian) paleocommunity collapse and recovery during the “Big Crisis”. Geological Society of America Bulletin, 124, 1841–1857.
http://dx.doi.org/10.1130/B30642.1

Jaeger, H. 1991. Neue Standard-Graptolithenzonenfolge nach der ‘Großen Krise’ an der Wenlock/Ludlow-Grenze (Silur). Neues Jahrbuch für Geologie und Paläontologie – Abhandlungen, 182, 303–354.

Jarochowska, E. & Munnecke, A. 2014. The Paleozoic problematica Wetheredella and Allonema are two aspects of the same organism. Facies, 60, 651–662.
http://dx.doi.org/10.1007/s10347-014-0399-z

Jarochowska, E., Munnecke, A. & Kozłowski, W. 2014. An unusual microbial-rostroconch assemblage from the Mulde Event (Homerian, middle Silurian) in Podolia, Western Ukraine. GFF, 136, 120–124.
http://dx.doi.org/10.1080/11035897.2013.873988

Jeppsson, L. 1993. Silurian events: the theory and the conodonts. Proceedings of the Estonian Academy of Sciences, Geology, 42, 23–27.

Kaljo, D., Boucot, A. J., Corfield, R. M., Le Hérrisé, A., Koren, T. N., Křiž, J., Männik, P., Märss, T., Nestor, V., Shaver, R. H., Siveter, D. J. & Viira, V. 1995. Silurian bio-events. In Global Events and Event Stratigraphy in the Phanerozoic (Walliser, O. H., ed.), pp. 173–224. Springer, Berlin.

Kaljo, D. L., Grytsenko, V. P., Martma, T. & Mõtus, M. A. 2007. Three global carbon isotope shifts in the Silurian of Podolia (Ukraine): stratigraphical implications. Estonian Journal of Earth Sciences, 56, 205–220.
http://dx.doi.org/10.3176/earth.2007.02

Kershaw, S. & Da Silva, A.-C. 2013. Stromatoporoid diversity and growth in late Wenlock reefs and associated facies (Silurian) at Wenlock Edge, UK. In 3rd IGCP 591 Annual Meeting, Lund, Sweden (Lindskog, A. & Mehlqvist, K., eds), pp. 157–158. Lund University.

Kershaw, S., Li, Y. & Guo, L. 2007. Micritic fabrics define sharp margins of Wenlock patch reefs (middle Silurian) in Gotland and England. Geological Society, London, Special Publications, 275, 87–94.
http://dx.doi.org/10.1144/GSL.SP.2007.275.01.06

Kõrts, A. 1991. Distribution of calcareous algae, oncolites and stromatolites in the Wenlock–Ludlow boundary beds in Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 40, 43–49.

Lohmann, K. C. & Meyers, W. J. 1977. Microdolomite inclusions in cloudy prismatic calcites: a proposed criterion for former high magnesium calcites. Journal of Sedimentary Petrology, 47, 1078–1088.

Mata, S. A. & Bottjer, D. J. 2012. Microbes and mass extinctions: paleoenvironmental distribution of micro­bialites during times of biotic crisis. Geobiology, 10, 3–24.
http://dx.doi.org/10.1111/j.1472-4669.2011.00305.x

Munnecke, A., Calner, M., Harper, D. A. T. & Servais, T. 2010. Ordovician and Silurian sea-water chemistry, sea level, and climate: a synopsis. Palaeogeography, Palaeo­climatology, Palaeoecology, 296, 389–413.
http://dx.doi.org/10.1016/j.palaeo.2010.08.001

Nose, M., Schmid, D. U. & Leinfelder, R. R. 2006. Significance of microbialites, calcimicrobes, and calcareous algae in reefal framework formation from the Silurian of Gotland, Sweden. Sedimentary Geology, 192, 243–265.
http://dx.doi.org/10.1016/j.sedgeo.2006.04.009

Oti, M. & Muller, G. 1985. Textural and mineralogical changes in coralline algae, during meteoric diagenesis: an experimental approach. Neues Jahrbuch für Mineralogie, 151, 163–195.

Porębska, E., Kozłowska-Dawidziuk, A. & Masiak, M. 2004. The lundgreni event in the Silurian of the East European Platform, Poland. Palaeogeography, Palaeoclimatology, Palaeoecology, 213, 271–294.
http://dx.doi.org/10.1016/S0031-0182(04)00383-9

Radionova, E. P. & Einasto, R. E. 1986. The algal communities, their facies relations in the East Baltic Wenlock and Ludlow. In Teoriya i opyt ékostratigrafii (Kaljo, D. L. & Klaamann, E., eds), pp. 163–185. Valgus, Tallinn [in Russian].

Riding, R. 1991. Calcareous Algae and Stromatolites. Springer-Verlag, Berlin, 571 pp.
http://dx.doi.org/10.1007/978-3-642-52335-9

Riding, R. & Liang, L. 2005. Seawater chemistry control of marine limestone accumulation over the past 550 million years. Revista Española de Micropaleontología, 37, 1–11.

Sandberg, P. A. 1983. An oscillating trend in Phanerozoic non-skeletal carbonate mineralogy. Nature, 305, 19–22.
http://dx.doi.org/10.1038/305019a0

Westphal, H., Heindel, K., Brandano, M. & Peckmann, J. 2010. Genesis of microbialites as contemporaneous framework components of deglacial coral reefs, Tahiti (IODP 310). Facies, 56, 337–352.
http://dx.doi.org/10.1007/s10347-009-0207-3

Wray, J. L. 1977. Kalkalgen. Elsevier, Amsterdam, 185 pp.

Back to Issue