eesti teaduste
akadeemia kirjastus
SINCE 1952
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2020): 0.789

Centimetre-scale variability of redox-sensitive elements in Tremadocian black shales from the eastern Baltic Palaeobasin; pp. 233–239

Full article in PDF format | 10.3176/earth.2014.24

Rutt Hints, Alvar Soesoo, Margus Voolma, Siim Tarros, Toivo Kallaste, Sigrid Hade


The high-resolution study of vertical geochemical variability of shallow-water Tremadocian black shales of the Türisalu Formation targeted two drill core sections from Suur-Pakri Island, NW Estonia. Altogether 374 samples from 4.6 m thick shale were analysed by XRF. The metalliferous and organic-rich black shales revealed significant centimetre-scale variation in the concentration of redox-sensitive trace metals – U, Mo and V. The V profiles show cyclic variations in half a metre- to metre-scale and the strongest correlation with loss on ignition (LOI) 500 °C (interpreted to reflect organic matter abundance). The abundance of Mo presents high values near the lower and upper contacts of black shale and otherwise moderate covariance with LOI. The distribution of U is not coupled with LOI, being characterized by irregular local enrichment anomalies in the profiles of both sections. This suggests that sequestration of U may have been time-dependent and possibly favoured by dissimilatory U-reduction at the sediment–water interface under iron-reducing conditions. Significant depositional variability of the studied organic-rich muds apparently supported dynamic physicochemical and biological microenvironments at the sediment–water interface and thus temporally and spatially diversified the paths and efficiency of synsedimentary redox-sensitive trace element enrichment.


Algeo, T. J. & Lyons, T. W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleo­hydro­graphic conditions. Paleoceanography, 21, PA1016.

Algeo, T. J. & Maynard, J. B. 2004. Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289–318.

Algeo, T. J. & Tribovillard, N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268, 211–225.

Boyle, E. A. 1983. Chemical accumulation variations under the Peru Current during the past 130,000 years. Journal of Geophysical Research, 88, 7667–7680.

Brumsack, H. J. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeo­climatology, Palaeoecology, 232, 344–361.

Calvert, S. E. & Pedersen, T. F. 1993. Geochemistry of recent oxic and anoxic marine sediments – implications for the geological record. Marine Geology, 113, 67–88.

Cooper, R. A. & Sadler, P. M. 2012. Chapter 20. The Ordovician Period. In The Geological Time Scale 2012 (Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M., eds), pp. 489–523. Elsevier, Amsterdam.

Coveney Jr., R. M., Watney, W. L. & Maples, C. G. 1991. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances. Geology, 19, 147–150.<0147:CDMFPB>2.3.CO;2

Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H. & Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469, 80–83.

Hade, S. & Soesoo, A. 2014. Estonian graptolite argillites revisited: a future resource. Oil Shale, 13, 4–18.

Heinsalu, H., Kaljo, D., Kurvits, T. & Viira, V. 2003. The stratotype of the Orasoja Member (Tremadocian, Northeast Estonia): lithology, mineralogy, and bio­stratigraphy. Proceedings of the Estonian Academy of Sciences, Geology, 52, 135–154.

Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D. & Vaughan, D. J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60, 3631–3642.

Hints, R., Hade, S., Soesoo, A. & Voolma, M. 2014. Depositional framework of the East Baltic Tremadocian marginal black shale revisited. GFF,

Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnstrom, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sandstrom, H. & Willis, J. P. 2000. Seven sedimentary rock reference samples from Estonia. Oil Shale, 17, 215–223.

Komlos, J., Peacock, A., Kukkadapu, R. K. & Jaffé, P. R. 2008. Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions. Geochimica et Cosmochimica Acta, 72, 3603–3615.

Loog, A., Kurvits, T., Aruväli, J. & Petersell, V. 2001. Grain size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia. Oil Shale, 18, 281–297.

März, C., Poulton, S. W., Beckmann, B., Küster, K., Wagner, T. & Kasten, S. 2008. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta , 72, 3703–3717.

Morford, J. & Emerson, S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63, 1735–1750.

Pukkonen, E. & Rammo, M., 1992. Distribution of molybdenum and uranium in the Tremadoc Graptolite Argillite (Dictyonema Shale) of north-western Estonia. Bulletin of the Geological Survey of Estonia, 2(1), 3–15.

Schieber, J. 1994. Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology, 93, 193–208.

Schovsbo, N. H. 2002. Uranium enrichment shorewards in black shales: a case study from the Scandinavian Alum Shale. GFF, 124, 107–115.

Tribovillard, N., Algeo, T. J., Lyons, T. W. & Riboulleau, A. 2006. Application of trace metals as paleoredox and paleo­productivity proxies. Chemical Geology, 232, 12–32.

Van der Weijden, C. H. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology, 184, 167–187.

Voolma, M., Soesoo, A., Hade, S., Hints, R. & Kallaste, T. 2013. Geochemical hetero­geneity of Estonian graptolite argillite. Oil Shale, 30, 377–401.


Back to Issue