ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Centimetre-scale variability of redox-sensitive elements in Tremadocian black shales from the eastern Baltic Palaeobasin; pp. 233–239
PDF | 10.3176/earth.2014.24

Authors
Rutt Hints, Alvar Soesoo, Margus Voolma, Siim Tarros, Toivo Kallaste, Sigrid Hade
Abstract

The high-resolution study of vertical geochemical variability of shallow-water Tremadocian black shales of the Türisalu Formation targeted two drill core sections from Suur-Pakri Island, NW Estonia. Altogether 374 samples from 4.6 m thick shale were analysed by XRF. The metalliferous and organic-rich black shales revealed significant centimetre-scale variation in the concentration of redox-sensitive trace metals – U, Mo and V. The V profiles show cyclic variations in half a metre- to metre-scale and the strongest correlation with loss on ignition (LOI) 500 °C (interpreted to reflect organic matter abundance). The abundance of Mo presents high values near the lower and upper contacts of black shale and otherwise moderate covariance with LOI. The distribution of U is not coupled with LOI, being characterized by irregular local enrichment anomalies in the profiles of both sections. This suggests that sequestration of U may have been time-dependent and possibly favoured by dissimilatory U-reduction at the sediment–water interface under iron-reducing conditions. Significant depositional variability of the studied organic-rich muds apparently supported dynamic physicochemical and biological microenvironments at the sediment–water interface and thus temporally and spatially diversified the paths and efficiency of synsedimentary redox-sensitive trace element enrichment.

References

Algeo, T. J. & Lyons, T. W. 2006. Mo-total organic carbon covariation in modern anoxic marine environments: implications for analysis of paleoredox and paleo­hydro­graphic conditions. Paleoceanography, 21, PA1016.

http://dx.doi.org/10.1029/2004PA001112

Algeo, T. J. & Maynard, J. B. 2004. Trace element behavior and redox facies in core shales of Upper Pennsylvanian Kansas-type cyclothems. Chemical Geology, 206, 289–318.
http://dx.doi.org/10.1016/j.chemgeo.2003.12.009

Algeo, T. J. & Tribovillard, N. 2009. Environmental analysis of paleoceanographic systems based on molybdenum–uranium covariation. Chemical Geology, 268, 211–225.
http://dx.doi.org/10.1016/j.chemgeo.2009.09.001

Boyle, E. A. 1983. Chemical accumulation variations under the Peru Current during the past 130,000 years. Journal of Geophysical Research, 88, 7667–7680.
http://dx.doi.org/10.1029/JC088iC12p07667

Brumsack, H. J. 2006. The trace metal content of recent organic carbon-rich sediments: implications for Cretaceous black shale formation. Palaeogeography, Palaeo­climatology, Palaeoecology, 232, 344–361.
http://dx.doi.org/10.1016/j.palaeo.2005.05.011

Calvert, S. E. & Pedersen, T. F. 1993. Geochemistry of recent oxic and anoxic marine sediments – implications for the geological record. Marine Geology, 113, 67–88.
http://dx.doi.org/10.1016/0025-3227(93)90150-T

Cooper, R. A. & Sadler, P. M. 2012. Chapter 20. The Ordovician Period. In The Geological Time Scale 2012 (Gradstein, F. M., Ogg, J. G., Schmitz, M. D. & Ogg, G. M., eds), pp. 489–523. Elsevier, Amsterdam.
http://dx.doi.org/10.1016/B978-0-444-59425-9.00020-2

Coveney Jr., R. M., Watney, W. L. & Maples, C. G. 1991. Contrasting depositional models for Pennsylvanian black shale discerned from molybdenum abundances. Geology, 19, 147–150.
http://dx.doi.org/10.1130/0091-7613(1991)019<0147:CDMFPB>2.3.CO;2

Gill, B. C., Lyons, T. W., Young, S. A., Kump, L. R., Knoll, A. H. & Saltzman, M. R. 2011. Geochemical evidence for widespread euxinia in the Later Cambrian ocean. Nature, 469, 80–83.
http://dx.doi.org/10.1038/nature09700

Hade, S. & Soesoo, A. 2014. Estonian graptolite argillites revisited: a future resource. Oil Shale, 13, 4–18.
http://dx.doi.org/10.3176/oil.2014.1.02

Heinsalu, H., Kaljo, D., Kurvits, T. & Viira, V. 2003. The stratotype of the Orasoja Member (Tremadocian, Northeast Estonia): lithology, mineralogy, and bio­stratigraphy. Proceedings of the Estonian Academy of Sciences, Geology, 52, 135–154.

Helz, G. R., Miller, C. V., Charnock, J. M., Mosselmans, J. F. W., Pattrick, R. A. D., Garner, C. D. & Vaughan, D. J. 1996. Mechanism of molybdenum removal from the sea and its concentration in black shales: EXAFS evidence. Geochimica et Cosmochimica Acta, 60, 3631–3642.
http://dx.doi.org/10.1016/0016-7037(96)00195-0

Hints, R., Hade, S., Soesoo, A. & Voolma, M. 2014. Depositional framework of the East Baltic Tremadocian marginal black shale revisited. GFF,
http://dx.doi.org/10.1080/11035897.2013.866978

Kiipli, T., Batchelor, R. A., Bernal, J. P., Cowing, C., Hagel-Brunnstrom, M., Ingham, M. N., Johnson, D., Kivisilla, J., Knaack, C., Kump, P., Lozano, R., Michiels, D., Orlova, K., Pirrus, E., Rousseau, R. M., Ruzicka, J., Sandstrom, H. & Willis, J. P. 2000. Seven sedimentary rock reference samples from Estonia. Oil Shale, 17, 215–223.

Komlos, J., Peacock, A., Kukkadapu, R. K. & Jaffé, P. R. 2008. Long-term dynamics of uranium reduction/reoxidation under low sulfate conditions. Geochimica et Cosmochimica Acta, 72, 3603–3615.
http://dx.doi.org/10.1016/j.gca.2008.05.040

Loog, A., Kurvits, T., Aruväli, J. & Petersell, V. 2001. Grain size analysis and mineralogy of the Tremadocian Dictyonema shale in Estonia. Oil Shale, 18, 281–297.

März, C., Poulton, S. W., Beckmann, B., Küster, K., Wagner, T. & Kasten, S. 2008. Redox sensitivity of P cycling during marine black shale formation: dynamics of sulfidic and anoxic, non-sulfidic bottom waters. Geochimica et Cosmochimica Acta , 72, 3703–3717.
http://dx.doi.org/10.1016/j.gca.2008.04.025

Morford, J. & Emerson, S. 1999. The geochemistry of redox sensitive trace metals in sediments. Geochimica et Cosmochimica Acta, 63, 1735–1750.
http://dx.doi.org/10.1016/S0016-7037(99)00126-X

Pukkonen, E. & Rammo, M., 1992. Distribution of molybdenum and uranium in the Tremadoc Graptolite Argillite (Dictyonema Shale) of north-western Estonia. Bulletin of the Geological Survey of Estonia, 2(1), 3–15.

Schieber, J. 1994. Evidence for high-energy events and shallow-water deposition in the Chattanooga Shale, Devonian, central Tennessee, USA. Sedimentary Geology, 93, 193–208.
http://dx.doi.org/10.1016/0037-0738(94)90005-1

Schovsbo, N. H. 2002. Uranium enrichment shorewards in black shales: a case study from the Scandinavian Alum Shale. GFF, 124, 107–115.
http://dx.doi.org/10.1080/11035890201242107

Tribovillard, N., Algeo, T. J., Lyons, T. W. & Riboulleau, A. 2006. Application of trace metals as paleoredox and paleo­productivity proxies. Chemical Geology, 232, 12–32.
http://dx.doi.org/10.1016/j.chemgeo.2006.02.012

Van der Weijden, C. H. 2002. Pitfalls of normalization of marine geochemical data using a common divisor. Marine Geology, 184, 167–187.
http://dx.doi.org/10.1016/S0025-3227(01)00297-3

Voolma, M., Soesoo, A., Hade, S., Hints, R. & Kallaste, T. 2013. Geochemical hetero­geneity of Estonian graptolite argillite. Oil Shale, 30, 377–401.
http://dx.doi.org/10.3176/oil.2013.3.02

 

Back to Issue