ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Research article
Late Pleistocene and Holocene groundwater flow history in the Baltic Artesian Basin: a synthesis of numerical models and hydrogeochemical data; pp. 152–164
PDF | 10.3176/earth.2021.11

Authors
Rein Vaikmäe, Joonas Pärn, Valle Raidla, Jüri Ivask, Enn Kaup, Werner Aeschbach, Christoph Gerber, Jean-Michel Lemieux, Roland Purtschert, Arnaud Sterckx, Tõnu Martma, Leo Vallner
Abstract

We review our current understanding of groundwater flow history in the northern part of the Baltic Artesian Basin (BAB) from the end of the Late Pleistocene to current conditions based on the hydrogeological studies carried out in 2012–2020 by the Department of Geology, Tallinn University of Technology and its partners. Hydrogeochemical data and various numerical models are combined in order to understand the link between glaciations and groundwater flow. The results of our earlier research and published literature on groundwater flow history in the BAB are also taken into account. The reconstruction of groundwater flow history is based on the database of the isotopic, chemical and dissolved gas composition of groundwater. The database contains data on 1155 groundwater samples collected during 1974–2017. We find that groundwater in the BAB is controlled by the mixing of three distinct water masses: interglacial/modern meteoric water (δ18O ≈ –11‰), glacial meltwater (δ18O ≤ –18‰) and an older syngenetic end-member (δ18O ≥–4.5‰). The numerical modelling has suggested that the preservation of meltwater in the northern part of the BAB is controlled by confining layers and the proximity to the outcrop areas of aquifers. Aquifers containing groundwater of glacial origin are in a transient state with respect to modern topographically-driven groundwater flow conditions. The most important topics for future research that can address gaps in our current knowledge are also reviewed.

References

Aeschbach-Hertig, W. & Solomon, D. K. 2013. Noble gas thermometry in groundwater hydrology. In The Noble Gases as Geochemical Tracers (Burnard, P., ed.), pp. 81–122. Springer Verlag, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-28836-4_5

Babre, A., Kalvāns, A., Popovs, K., Retiķe, I., Dēliņa, A., Vaikmäe, R. & Martma, T. 2016. Pleistocene age paleo-groundwater inferred from water-stable isotope values in the central part of the Baltic Artesian Basin. Isotopes in Environmental and Health Studies, 52, 706–725.
https://doi.org/10.1080/10256016.2016.1168411

Boulton, G. S., Caban, P. E. & Van Gijssel, K. 1995. Ground­water flow beneath ice sheets: part 1 – large scale patterns. Quaternary Science Reviews, 14, 545–562. 
https://doi.org/10.1016/0277-3791(95)00039-R

Boulton, G. S., Caban, P. B., van Gissel, K., Leijnse, A., Punkari, M. & van Weert, F. H. A. 1996. The impact of glaciation on the groundwater regime of Northwest Europe. Global and Planetary Change, 12, 397–413. 
https://doi.org/10.1016/0921-8181(95)00030-5

Boulton, G. S., Zaptsepin, S. & Maillot, B. 2001. Analysis of Groundwater Flow Beneath Ice Sheets. Technical Report TR-01-06, SKB, Stockholm, Sweden, 45 pp.

Brangulis, A. J. & Kanevs, S. 2002. Latvijas tektonika [Tectonics of Latvia]. Geological Survey, Riga, 50 pp.

Carlson, A. E., Jenson, J. W. & Clark, P. U. 2007. Subglacial hydrology of the James Lobe of the Laurentide Ice Sheet: Quaternary Science Reviews,26, 1384–1397. 
https://doi.org/10.1016/j.quascirev.2007.02.002

Christner, B. C., Montross, G. G. & Priscu, J. C. 2012. Dissolved gases in frozen basal water from the NGRIP borehole: implications for biogeochemical processes beneath the Greenland ice sheet. Polar Biology, 35, 1735–1741.
https://doi.org/10.1007/s00300-012-1198-z

Clark, I. D., Douglas, M., Raven, K. & Bottomley, D. 2000. Recharge and preservation of Laurentide glacial melt water in the Canadian Shield. Ground Water, 38, 735–742. 
https://doi.org/10.1111/j.1745-6584.2000.tb02709.x

Clayton, R. N., Friedman, L., Graf, D. L., Mayeda, T. K., Meents, W. F. & Shimp, N. F. 1966. The origin of saline formation waters. 1. Isotopic composition. Journal of Geophysical Research, 71, 3869–3882.
https://doi.org/10.1029/JZ071i016p03869

Craig, H. 1961. Isotopic variations in meteoric waters. Science, 133, 1702–1703.
https://doi.org/10.1126/science.133.3465.1702

Edmunds, W. M. 2001. Palaeowaters in European coastal aquifers – the goals and main conclusions of the PALAEAUX project. In Palaeowaters of Coastal Europe: Evolution of Groundwater since the Late Pleistocene (Edmunds, W. M. & Milne, C. J., eds), Geological Society, London, Special Publications, 189, 1–16.
https://doi.org/10.1144/GSL.SP.2001.189.01.02

Gerber, C., Vaikmäe, R., Aeschbach, W., Babre, A., Jiang, W., Leuenberger, M., Lu, Z.-T., Mokrik, R., Müller, P., Raidla, V., Saks, T., Waber, H. N., Weissbach, T., Zappala, J. C. & Purtschert, R. 2017. Using 81Kr and noble gases to characterize and date groundwater and brines in the Baltic Artesian Basin on the one-million-year timescale. Geochimica et Cosmochimica Acta, 205, 187–210. 
https://doi.org/10.1016/j.gca.2017.01.033

Grasby, S., Osadetz, K., Betcher, R. & Render, F. 2000. Reversal of the regional-scale flow system of the Williston basin in response to Pleistocene glaciation. Geology, 28, 635–638.
https://doi.org/10.1130/0091-7613(2000)028<0635:ROTRSF>2.3.CO;2

Grundl, T., Magnusson, N., Brenwald, M. S. & Kipfer, R. 2013. Mechanisms of subglacial groundwater recharge as derived from noble gas, 14C, and stable isotope data. Earth and Planetary Science Letters, 369–370, 78–85. 
https://doi.org/10.1016/j.epsl.2013.03.012

Guobyte, R. & Satkunas, J. 2011. Chapter 19 – Pleistocene glaciations in Lithuania. In Quaternary Glaciations – Extent and Chronology, A Closer Look (Ehlers, J., Gibbard, P. L. & Hughes, P. D., eds), pp. 231–246. Elsevier, 
http://www.sciencedirect.com/science/article/pii/B9780444534477000192 [accessed 30 April 2020].
https://doi.org/10.1016/B978-0-444-53447-7.00019-2

IAEA/WMO. 2020. WISER–Water Isotope System for Data Analysis, Visualization and Electronic Retrieval. Available at 
https://nucleus.iaea.org/wiser/index.aspx [accessed 30 April 2020].

Jiang, W., Bailey, K., Lu, Z.-T., Mueller, P., O’Connor, T. P., Cheng, C.-F., Hu, S.-M., Purtschert, R., Sturchio, N. C., Sun, Y. R., Williams, W. D. & Yang, G.-M. 2012. An atom counter for measuring 81$Kr and 85$Kr in environmental samples. Geochimica et Cosmochimica Acta, 91, 1–6. 
https://doi.org/10.1016/j.gca.2012.05.019

Jõeleht, A. 1998. Geothermal Studies of the Precambrian Basement and Phanerozoic Sedimentary Cover in Estonia and in Finland. Dissertationes Geologicae Universitatis Tartuensis 7. Tartu University Press.

Juodkazis, V. (ed.). 1980. Hydrogeological Map of the Pre-quaternary Deposits of the Soviet Baltic Republics. Ministry of Geology of the USSR.

Kalm, V. 2012. Ice-flow pattern and extent of the last Scandinavian Ice Sheet southeast of the Baltic Sea. Quaternary Science Reviews, 44, 51–59. 
https://doi.org/10.1016/j.quascirev.2010.01.019

Kalvāns, A. 2012. A list of factors controlling groundwater composition in the Baltic Artesian Basin. In Highlights of Groundwater Research in the Baltic Artesian Basin (Dēliņa, A., Kalvāns, A., Saks, T., Bethers, U. & Vircavs, V., eds), pp. 91–105. University of Latvia.

Karise, V. 1997. Composition and properties of groundwater under natural conditions. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 152–155. Estonian Academy Publishers, Tallinn.

Karro, E., Marandi, A. & Vaikmäe, R. 2004. The origin of increased salinity in the Cambrian-Vendian aquifer system on the Kopli Peninsula, northern Estonia. Hydrogeology Journal, 12, 424−435.
https://doi.org/10.1007/s10040-004-0339-z

Kipfer, R., Aeschbach-Hertig, W., Peeters, F. & Stute, M. 2002. Noble gases in lakes and ground waters. Reviews in Mineralogy and Geochemistry, 47, 615–700. 
https://doi.org/10.2138/rmg.2002.47.14

Kooi, H. & Groen, J. 2003. Geological processes and the management of groundwater resources in coastal areas. Netherlands Journal of Geosciences / Geologie en Mijnbouw, 82, 31–40.
https://doi.org/10.1017/S0016774600022770

Lemieux, J.-M. & Sudicky, E. A. 2010. Simulation of groundwater age evolution during the Wisconsinian glaciation over the Canadian landscape. Environmental Fluid Mechanics, 10, 91–102.
https://doi.org/10.1007/s10652-009-9142-7

Lemieux, J. M., Sudicky, E., Peltier, W. & Tarasov, L. 2008. Dynamics of groundwater recharge and seepage over the Canadian landscape during the Wisconsinian glaciation. Journal of Geophysical Research, 113, F01011. 
https://doi.org/10.1029/2007JF000838

Lukševičs, E., Stinkulis, G., Mūrnieks, A. & Popovs, K. 2012. Geological evolution of the Baltic Artesian Basin. In Highlights of Groundwater Research in the Baltic Artesian Basin (Dēliņa, A., Kalvāns, A., Saks, T., Bethers, U. & Vircavs, V., eds), pp. 7–52. University of Latvia. 

Ma, L., Castro, M. C. & Hall, C. M. 2004. A Late Pleistocene–Holocene noble gas paleotemperature record in southern Michigan. Geophysical Research Letters, 31, L23204, 4 pp.
https://doi.org/10.1029/2004GL021766

Marandi, A. 2007. Natural Chemical Composition of Groundwater as a Basis for Groundwater Management in the Cambrian–Vendian Aquifer System in Estonia. Dissertationes Geologicae Universitatis Tartuensis, 21. Tartu University Press, Tartu, 83 pp. 

McIntosh, J. C. & Walter, L. M. 2005. Volumetrically significant recharge of Pleistocene glacial meltwaters into epicratonic basins: Constraints imposed by solute mass balances. Chemical Geology, 222, 292–309. 
https://doi.org/10.1016/j.chemgeo.2005.07.010

McIntosh, J. C. & Walter, L. M. 2006. Paleowaters in Silurian–Devonian carbonate aquifers: geochemical evolution of groundwater in the Great Lakes region since the Late Pleistocene. Geochimica et Cosmochimica Acta, 70, 2454–2479.
https://doi.org/10.1016/j.gca.2006.02.002

McIntosh, J. C., Schlegel, M. E. & Person, M. 2012. Glacial impacts on hydrologic processes in sedimentary basins: evidence from natural tracer studies. Geofluids, 12, 7–21. 
https://doi.org/10.1111/j.1468-8123.2011.00344.x

Moeller, C. A., Mickelson, D. M., Anderson, M. P. & Winguth, C. 2007. Groundwater flow beneath late Weichselian glacier ice in Nordfjord, Norway. Journal of Glaciology, 53, 84–90.
https://doi.org/10.3189/172756507781833811

Mokrik, R. 1997. The Palaeohydrogeology of the Baltic Basin: Vendian & Cambrian. Institute of Geology, Lithuania, 138 pp.

Mokrik, R., Mažeika, J., Baublyte, A. & Martma, T. 2009. The groundwater age in the Middle-Upper Devonian aquifer system, Lithuania. Hydrogeology Journal, 17, 871–889. 
https://doi.org/10.1007/s10040-008-0403-1

Neuzil, C. E. 2012. Hydromechanical effects of continental glaciation on groundwater systems. Geofluids, 12, 22–37. 
https://doi.org/10.1111/j.1468-8123.2011.00347.x

Pärn, J. 2018. Origin and Geochemical Evolution of Palaeo­groundwater in the Northern Part of the Baltic Artesian Basin. Tallinn University of Technology, Doctoral thesis, 58/2018, TTÜ Press, 130 pp.

Pärn, J., Raidla, V., Vaikmäe, R., Martma, T., Ivask, J., Mokrik, R. & Erg, K. 2016. The recharge of glacial meltwater and its influence on the geochemical evolution of groundwater in the Ordovician–Cambrian aquifer system, northern part of the Baltic Artesian Basin. Applied Geochemistry, 72, 125–135. 
https://doi.org/10.1016/j.apgeochem.2016.07.007

Pärn, J., Affolter, S., Ivask, J., Johnson, S., Kirsimäe, K., Leuenberger, M., Martma, T., Raidla, V., Schloemer, S., Sepp, H., Vaikmäe, R. & Walraevens, K. 2018. Redox zonation and organic matter oxidation in palaeo­groundwater of glacial origin from the Baltic Artesian Basin. Chemical Geology, 488, 149–161.
https://doi.org/10.1016/j.chemgeo.2018.04.027

Pärn, J., Walraevens, K., van Camp, M., Raidla, V., Aeschbach, W., Friedrich, R., Ivask, J., Kaup, E., Martma, T., Mažeika, J., Mokrik, R., Weissbach, T. & Vaikmäe, R. 2019. Dating of glacial palaeogroundwater in the Ordovician–Cambrian aquifer system, northern Baltic Artesian Basin. Applied Geochemistry, 102, 64–76. 
https://doi.org/10.1016/j.apgeochem.2019.01.004

Person, M., Dugan, B., Swenson, J. B., Urbano, L., Stott, C., Taylor, J. & Willett, M. 2003. Pleistocene hydrogeology of the Atlantic continental shelf, New England. GSA Bulletin, 115, 1324–1343. 
https://doi.org/10.1130/B25285.1

Person, M., McIntosh, J., Bense, V. & Remenda, V. H. 2007. Pleistocene hydrology of North America: The role of ice sheets in reorganizing groundwater flow systems. Reviews of Geophysics, 45, 2006RG000206, 1–28.
https://doi.org/10.1029/2006RG000206

Piotrowski, J. A. 1997. Subglacial groundwater flow during the last glaciation in northwestern Germany. Sedimentary Geology, 111, 217–224.
https://doi.org/10.1016/S0037-0738(97)00002-X

Poprawa, P., Šliaupa, S., Stephenson, R. & Lazauskiene, J. 1999. Late Vendian–Early Palaeozoic tectonic evolution of the Baltic Basin: regional tectonic implications from subsidence analysis. Tectonophysics, 314, 219–239.
https://doi.org/10.1016/S0040-1951(99)00245-0

Punning, J.-M., Toots, M. & Vaikmäe, R. 1987. Oxygen-18 in Estonian natural waters. Isotopenpraxis, 23, 232–234.
https://doi.org/10.1080/10256018708623797

Raidla, V. 2010. Chemical and Isotope Evolution of Groundwater in the Cambrian-Vendian Aquifer System in Estonia. Dissertationes Geologicae Universitatis Tartuensis, 28, Tartu University Press, 134 pp.

Raidla, V., Kirsimäe, K., Bityukova, L., Jõeleht, A., Shogenova, A. & Šliaupa, S. 2006. Lithology and diagenesis of the poorly consolidated Cambrian siliciclastic sediments in the north­ern Baltic Sedimentary Basin. Geological Quarterly, 50, 11–22.

Raidla, V., Kirsimäe, K., Vaikmäe, R., Jõeleht, A., Karro, E., Marandi, A. & Savitskaja, L. 2009. Geochemical evolution of groundwater in the Cambrian–Vendian aquifer system of the Baltic Basin. Chemical Geology, 258, 219–231.
https://doi.org/10.1016/j.chemgeo.2008.10.007

Raidla, V., Kirsimäe, K., Vaikmäe, R., Kaup, E. & Martma, T. 2012. Carbon isotope systematics of the Cambrian–Vendian aquifer system in the northern Baltic Basin: implications to the age and evolution of groundwater. Applied Geochemistry, 27, 2042–2052.
https://doi.org/10.1016/j.apgeochem.2012.06.005

Raidla, V., Kirsimäe, K., Ivask, J., Kaup, E., Knöller, K., Marandi, A., Martma, T. & Vaikmäe, R. 2014. Sulphur isotope composition of dissolved sulphate in the Cambrian–Vendian aquifer system in the northern part of the Baltic Artesian Basin. Chemical Geology, 383, 147–154. 
https://doi.org/10.1016/j.chemgeo.2014.06.011

Raidla, V., Kern, Z., Pärn, J., Babre, A., Erg, K., Ivask, J., Kalvāns, A., Kohán, B., Lelgus, M., Martma, T., Mokrik, R., Popovs, K. & Vaikmäe, R. 2016. A δ18O isoscape for the shallow groundwater in the Baltic Artesian Basin. Journal of Hydrology, 542, 254–267.
https://doi.org/10.1016/j.jhydrol.2016.09.004

Raidla, V., Pärn, J., Schloemer, S., Aeschbach, W., Czuppon, G., Ivask, J., Marandi, A., Sepp, H., Vaikmäe, R. & Kirsimäe, K. 2019a. Origin and formation of methane in groundwater of glacial origin from the Cambrian–Vendian aquifer system in Estonia. Geochimica et Cosmochimica Acta, 251, 247–264. 
https://doi.org/10.1016/j.gca.2019.02.029

Raidla, V., Pärn, J., Aeschbach, W., Czuppon, G., Ivask, J., Kiisk, M., Mokrik, R., Samalavičius, V., Suursoo, S., Tarros, S. & Weissbach, T. 2019b. Intrusion of saline water into a coastal aquifer containing palaeogroundwater in the Viimsi peninsula in Estonia. Geosciences, 9, 47, 25 pp.
https://doi.org/10.3390/geosciences9010047

Rousseau-Gueutin, P., Love, A. J., Vasseur, G., Robinson, N. I., Simmons, C. T. & de Marsily, G. 2013. Time to reach near-steady state in large aquifers. Water Resources Research, 49, 6893–6908.
https://doi.org/10.1002/wrcr.20534

Saks, T., Seņņikovs, J., Timuhins, A., Marandi, A. & Kalvāns, A. 2012. Groundwater flow beneath the Scandinavian ice sheet in the Baltic Basin. In Highlights of Groundwater Research in the Baltic Artesian Basin (Dēliņa, A., Kalvāns, A., Saks, T., Bethers, U. & Vircavs, V., eds), pp. 75–90. University of Latvia. 

Savitskaja, L., Viigand, A. & Jashtshuk, S. 1995. Aruanne ordoviitsiumi-kambriumi veekihi põhjavee mikrokomponentide sisalduse ja isotoopkoostise uurimisest joogivee kvaliteedi hindamiseks [Report on the Microcomponent and Isotopic Composition of Groundwater in the Ordovician–Cambrian Aquifer System for Estimating Drinking Water Quality in North Estonia]. Geological Survey of Estonia, Tallinn, 54 pp. [in Estonian].

Savitskaja, L., Viigand, A. & Jashtshuk, S. 1996. Keskdevoni-siluri veekompleksi põhjavee kvaliteedi uurimistöö [Report on the Water Quality in the Middle Devonian–Silurian Aquifer System]. Geological Survey of Estonia, Tallinn, 591 pp. [in Estonian]. 

Savitskaja, L., Viigand, A. & Jashtshuk, S. 1997. Siluri-Ordoviitsiumi veekompleksi põhjavee mikrokomponentide ja radionukliidide uurimistöö[Report on the Micro­component and Radionuclide Composition of Groundwater in the Silurian–Ordovician Aquifer System]. Geological Survey of Estonia, Tallinn, 51 pp. [in Estonian]. 

Siegel, D. I. & Mandle, R. J. 1984. Isotopic evidence for glacial meltwater recharge to the Cambrian–Ordovician aquifer, North-Central United States. Quaternary Research, 22, 328–335.
https://doi.org/10.1016/0033-5894(84)90026-7

Sterckx, A., Lemieux, J. M. & Vaikmäe, R. 2017. Representing glaciations and subglacial processes in hydrogeological models: a numerical investigation. Geofluids, 2017, 4598902, 12 pp. 
https://doi.org/10.1155/2017/4598902

Sterckx, A., Lemieux, J.-M. & Vaikmäe, R. 2018. Assessment of paleo-recharge under the Fennoscandian Ice Sheet and its impact on regional groundwater flow in the northern Baltic Artesian Basin using a numerical model. Hydro­geology Journal, 26, 2793–2810. 
https://doi.org/10.1007/s10040-018-1838-7

Suursoo, S., Hill, L., Raidla, V., Kiisk, M., Jantsikene, A., Nilb, N., Czuppon, G., Putk, K., Munter, R., Koch, R. & Isakar, K. 2017. Temporal changes in radiological and chemical composition of Cambrian-Vendian groundwater in con­ditions of intensive water consumption. Science of the Total Environment, 601–602, 679–690. 
https://doi.org/10.1016/j.scitotenv.2017.05.136

Tuuling, I. & Põldsaar, K. 2021. The role of the Leba Ridge–Riga–Pskov Fault Zone in the tectonic evolution of the deep-facies Livonian Tongue within the Baltic Ordovician–Silurian sedimentary basin: a review. Estonian Journal of Earth Sciences, 70, 94–106. 
https://doi.org/10.3176/earth.2021.07

Vaikmäe, R., Vallner, L., Loosli, H. H., Blaser, P. C. & Julliard-Tardent, M. 2001a. Paleogroundwater of glacial origin in the Cambrian-Vendian aquifer of northern Estonia. In Palaeowaters in Coastal Europe: Evolution of Ground­water since the Late Pleistocene (Edmunds, W. M. & Milne, C. J., eds), Geological Society, London, Special Publications, 189, 17–27.
https://doi.org/10.1144/GSL.SP.2001.189.01.03

Vaikmäe, R., Edmunds, W. M. & Manzano, M. 2001b. Weichselian palaeoclimate and palaeoenvironment in Europe: background for palaeogroundwater formation. In Palaeowaters in Coastal Europe: Evolution of Ground­water since the Late Pleistocene (Edmunds, W. M. & Milne, C. J., eds), Geological Society, London, Special Publications, 189, 163–191.
https://doi.org/10.1144/GSL.SP.2001.189.01.11

Vaikmäe, R., Kaup, E., Marandi, A., Martma, T., Raidla, V. & Vallner, L. 2008. The Cambrian-Vendian aquifer, Estonia. In The Natural Baseline Quality of Groundwater (Edmunds, W. M. & Shand, P., eds), pp. 175–189. Blackwell Publishing, Oxford. 

Vaikmäe, R., Martma, T., Ivask, J., Kaup, E., Raidla, V., Rajamäe, R., Vallner, L., Mokrik, R., Samalavičius, V., Kalvāns, A., Babre, A., Marandi, A., Hints, O. & Pärn, J. 2020. Baltic groundwater isotope-geochemistry database. Department of Geology, Tallinn University of Technology, 
https://doi.org/10.15152/GEO.488 [accessed 30 April 2020].

Vallner, L. 2003. Hydrogeological model of Estonia and its applications. Proceedings of the Estonian Academy of Sciences, Geology, 52, 179–192.

Vallner, L. & Porman, A. 2016. Groundwater flow and transport model of the Estonian Artesian Basin and its hydrological developments. Hydrology Research, 47, 814–834.
https://doi.org/10.2166/nh.2016.104

Vallner, L., Ivask, J., Marandi, A., Vaikmäe, R., Raidla, V. & Raukas, A. 2020. Transient 3D simulation of 18O con­centration by codes MODFLOW-2005 and MT3DMS in a regional-scale aquifer system: an example from the Estonian Artesian Basin. Estonian Journal of Earth Sciences, 69, 154–174. 
https://doi.org/10.3176/earth.2020.11

Van Weert, F. H. A., van Gijssel, K., Leijnse, A. & Boulton, G. S. 1997. The effects of Pleistocene glaciations on the geo­hydrological system of Northwest Europe. Journal of Hydrology, 195, 137–159. 
https://doi.org/10.1016/S0022-1694(96)03248-9

Vingisaar, P. 1978. Estonian mineral waters and their ex­ploitation. In Põhjavee kasutamisest ja kaitsest Eesti NSV-s [Exploitation and Protection of Estonian Ground Water Reserves] (Heinsalu, Ü., ed.), pp. 54–71. Eesti NSV Teaduste Akadeemia, Tallinn [in Estonian].

Virbulis, J., Bethers, U., Saks, T., Sennikovs, J. & Timuhins, A. 2013. Hydrogeological model of the Baltic Artesian Basin. Hydrogeology Journal, 21, 845–862.
https://doi.org/10.1007/s10040-013-0970-7

Weissbach, T. 2014. Noble Gases in Palaeogroundwater of Glacial origin in the Cambrian-Vendian Aquifer System, Estonia. Master’s Thesis, University of Heidelberg, Heidelberg, 116 pp.

Zuzevičius, A. 2010. The groundwater dynamics in the southern part of the Baltic Artesian Basin during the Late Pleistocene. Baltica, 23, 1–12. 

Back to Issue