The clay mineral composition of the lower Cambrian (Terreneuvian) Blue Clay (BC) in the northern Baltic Palaeobasin was studied. The proportion of illite in mixed-layer illite-smectite in the BC increases gradually from ca 85% in northern Estonia to ca 92% in central Latvia with the present burial depth increasing from a few hundred metres to ca 1000 m. The high level of illitization suggests a mature diagenetic grade of the sediments, which is typically achieved with burial at several kilometres. However, uncompact nature and thermally immature organic material suggest only shallow burial and maximum palaeotemperatures not exceeding 50 °C. The smectite-to-illite transformation in the BC was described using a kinetic modelling to assess the constraints on burial-driven illitization. Modelling results show that the present illitization level is possible to achieve by assuming burial during the Devonian to Permian prior to the erosion in the Mesozoic. The thickness of eroded sediments in the northern part of the basin was in this case only about 400–800 m. The smectite-to-illite transformation process in the BC in the northern Baltic Palaeobasin was controlled rather by time than by temperature.
Bethke, C. M. & Altaner, S. P. 1986. Layer-by-layer mechanism of smectite illitization and application to a New Rate Law. Clays and Clay Minerals, 34, 136–145.
https://doi.org/10.1346/CCMN.1986.0340204
Bogdanova, S., Gorbatschev, R., Grad, M., Janik, T., Guterch, A., Kozlovskaya, E., Motuza, G., Skridlaite, G., Starostenko, V., Taran, L. & EUROBRIDGE and POLONAISE Working Groups. 2006. EUROBRIDGE: new insight into the geodynamic evolution of the East European Craton. Geological Society, London, Memoirs, 32, 599–625.
https://doi.org/10.1144/GSL.MEM.2006.032.01.36
Brangulis, A., Kala, E. & Kisnerius, J. 1982. Palaeozoic System. In Geology of the Soviet Baltic Republics (Grigelis, A., ed.), pp. 34–127. Nedra, Leningrad [in Russian].
Buatier, M. D., Peacor, D. R. & Oneil, J. R. 1992. Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution crystallization at low temperature. Clays and Clay Minerals, 40, 65–80.
https://doi.org/10.1346/CCMN.1992.0400108
Buhmann, C. 1992. Smectite-to-illite conversion in a geothermally and lithologically complex Permian sedimentary sequence. Clays and Clay Minerals, 40, 53–64.
https://doi.org/10.1346/CCMN.1992.0400107
Chaudhuri, S., Srodon, J. & Clauer, N. 1999. K-Ar dating of illitic fractions of Estonian ‟blue clay” treated with alkylammonium cations. Clays and Clay Minerals, 47, 96–102.
https://doi.org/10.1346/CCMN.1999.0470110
Clauer, N., Zwingmann, H. & Gorokhov, I. M. 2003. Postdepositional evolution of platform claystones based on a simulation of thermally induced diffusion of radiogenic Ar-40 from diagenetic illite. Journal of Sedimentary Research, 73, 58–63.
https://doi.org/10.1306/061002730058
Cuadros, J. 2006. Modeling of smectite illitization in burial diagenesis environments. Geochimica et Cosmochimica Acta, 70, 4181–4195.
https://doi.org/10.1016/j.gca.2006.06.1372
Cuadros, J. & Linares, J. 1996. Experimental kinetic study of the smectite-to-illite transformation. Geochimica et Cosmochimica Acta, 60, 439–453.
https://doi.org/10.1016/0016-7037(95)00407-6
Drits, V. A., Lindgreen, H., Sakharov, B. A., Jakobsen, H. J., Fallick, A. E., Salyn, A. L., Dainyak, L. G., Zviagina, B. B. & Barfod, D. N. 2007. Formation and transformation of mixed-layer minerals by tertiary intrusives in Cretaceous mudstones, West Greenland. Clays and Clay Minerals, 55, 260–283.
https://doi.org/10.1346/CCMN.2007.0550304
Eberl, D. & Hower, J. 1976. Kinetics of illite formation. Geological Society of America Bulletin, 87, 1326–1330.
https://doi.org/10.1130/0016-7606(1976)87<1326:KOIF>2.0.CO;2
Eensaar, J., Gaškov, M., Pani, T., Sepp, H., Somelar, P. & Kirsimäe, K. 2017a. Hydrothermal fracture mineralization in the stable cratonic northern part of the Baltic Paleobasin: sphalerite fluid inclusion evidence. GFF, 139, 52–62.
https://doi.org/10.1080/11035897.2016.1196499
Eensaar, J., Pani, T., Gaškov, M., Sepp, H. & Kirsimäe, K. 2017b. Stable isotope composition of hypogenic speleothem calcite in Kalana (Estonia) as a record of microbial methanotrophy and fluid evolution. Geological Magazine, 154, 57–67.
https://doi.org/10.1017/S0016756815000928
Elliott, W. C. & Matisoff, G. 1996. Evaluation of kinetic models for the smectite to illite transformation. Clays and Clay Minerals, 44, 77–87.
https://doi.org/10.1346/CCMN.1996.0440107
Ferrage, E., Vidal, O., Mosser-Ruck, R., Cathelineau, M. & Cuadros, J. 2011. A reinvestigation of smectite illitization in experimental hydrothermal conditions: Results from X-ray diffraction and transmission electron microscopy. American Mineralogist, 96, 207–223.
https://doi.org/10.2138/am.2011.3587
Freed, R. L. & Peacor, D. R. 1989. Variability in temperature of the smectite/illite reaction in Gulf Coast sediments. Clay Minerals, 24, 171–180.
https://doi.org/10.1180/claymin.1989.024.2.05
Freed, R. L. & Peacor, D. R. 1992. Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates. Journal of Sedimentary Petrology, 62, 220–234.
https://doi.org/10.1306/D42678CA-2B26-11D7-8648000102C1865D
Gaškov, M., Sepp, H., Pani, T., Paiste, P. & Kirsimäe, K. 2017. Barite mineralization in Kalana speleothems, Central Estonia: Sr, S and O isotope characterization. Estonian Journal of Earth Sciences, 66, 130–141.
https://doi.org/10.3176/earth.2017.10
Geyer, G. 2019. A comprehensive Cambrian correlation chart. Episodes, 42, 321–332.
https://doi.org/10.18814/epiiugs/2019/019026
Gharrabi, M. & Velde, B. 1995. Clay mineral evolution in the Illinois Basin and its causes. Clay Minerals, 30, 353–364.
https://doi.org/10.1180/claymin.1995.030.4.08
Gorokhov, I. M., Clauer, N., Turchenko, T. L., Melnikov, N. N., Kutyavin, E. P., Pirrus, E. & Baskakov, A. V. 1994. Rb–Sr systematics of Vendian–Cambrian claystones from the east European Platform: implications for a multi-stage illite evolution. Chemical Geology, 112, 71–89.
https://doi.org/10.1016/0009-2541(94)90105-8
Gorokhov, I. M., Melnikov, N. N., Turchenko, T. L. & Kutyavin, E. P. 1997. Rb–Sr systematics of clay fractions in Lower-Riphean argillites: Ust-Il´inskaya Formation, Anabar Massif, northern Siberia. Lithology and Mineral Resources, 5, 530–539.
Grotek, I. 2006. Thermal maturity of organic matter from the sedimentary cover deposits from Pomeranian part of the TESZ, Baltic Basin and adjacent area. Prace Państwowego Instytutu Geologicznego, 186, 253–270.
Hagenfeldt, S. 1996. Lower Palaeozoic acritarchs as indicators of heat flow burial depth of sedimentary sequences in Scandinavia. Acta Universitatis Carolinae, Geologica, 40, 413–424.
Hillier, S., Matyas, J., Matter, A. & Vasseur, G. 1995. Illite/smectite diagenesis and its variable correlation with vitrinite reflectance in the Pannonian Basin. Clays and Clay Minerals, 43, 174–183.
https://doi.org/10.1346/CCMN.1995.0430204
Hoffman, J. & Hower, J. 1979. Clay mineral assemblages as low grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A. In Aspects of Diagenesis (Scholle, P. A. & Schluger, P. R., eds), pp. 55–79. SEPM Special Publication, SEPM Society for Sedimentary Geology.
https://doi.org/10.2110/pec.79.26.0055
Huang, W. L., Longo, J. M. & Pevear, D. R. 1993. An experimentally derived kinetic model for smectite-to-illite conversion and its use as a geothermometer. Clays and Clay Minerals, 41, 162–177.
https://doi.org/10.1346/CCMN.1993.0410205
Huggett, J. M. & Cuadros, J. 2005. Low-temperature illitization of smectite in the late eocene and early oligocene of the Isle of Wight (Hampshire basin), U.K. American Mineralogist, 90, 1192–1202.
https://doi.org/10.2138/am.2005.1674
Ijiri, A., Tomioka, N., Wakaki, S., Masuda, H., Shozugawa, K., Kim, S., Khim, B. K., Murayama, M., Matsuo, M. & Inagaki, F. 2018. Low-temperature clay mineral dehydration contributes to porewater dilution in Bering Sea Slope subseafloor. Frontiers in Earth Science, 6.
https://doi.org/10.3389/feart.2018.00036
Isozaki, Y., Põldvere, A., Bauert, H., Nakahata, H., Aoki, K., Sakata, S. & Hirata, T. 2014. Provenance shift in Cambrian mid-Baltica: detrital zircon chronology of Ediacaran–Cambrian sandstones in Estonia. Estonian Journal of Earth Sciences, 63, 251–256.
https://doi.org/10.3176/earth.2014.27
Japsen, P., Green, P. F., Bonow, J. M. & Erlstrom, M. 2016. Episodic burial and exhumation of the southern Baltic Shield: Epeirogenic uplifts during and after break-up of Pangaea. Gondwana Research, 35, 357–377.
https://doi.org/10.1016/j.gr.2015.06.005
Kim, J., Dong, H. L., Seabaugh, J., Newell, S. W. & Eberl, D. D. 2004. Role of microbes in the smectite-to-illite reaction. Science, 303(5659), 830–832.
https://doi.org/10.1126/science.1093245
Kirs, J., Puura, V., Soesoo, A., Klein, V., Konsa, M., Koppelmaa, H., Niin, M. & Urtson, K. 2009. The crystalline basement of Estonia: rock complexes of the Palaeoproterozoic Orosirian and Statherian and Mesoproterozoic Calymmian periods, and regional correlations. Estonian Journal of Earth Sciences, 58, 219–228.
https://doi.org/10.3176/earth.2009.4.01
Kirsimäe, K. & Jørgensen, P. 2000. Mineralogical and Rb-Sr isotope studies of low-temperature diagenesis of Lower Cambrian clays of the Baltic paleobasin of North Estonia. Clays and Clay Minerals, 48, 95–105.
https://doi.org/10.1346/CCMN.2000.0480112
Kirsimäe, K., Jørgensen, P. & Kalm, V. 1999a. Low-temperature diagenetic illite-smectite in Lower Cambrian clays in North Estonia. Clay Minerals, 34, 151–163.
https://doi.org/10.1180/claymin.1999.034.1.16
Kirsimäe, K., Kalm, V. & Jørgensen, P. 1999b. Diagenetic transformation of clay minerals in Lower Cambrian argillaceous sediments of North Estonia. Proceedings of the Estonian Academy of Sciences, Geology, 48, 15–34.
https://doi.org/10.1180/claymin.1999.034.1.16
Kohn, B. P., Lorencak, M., Gleadow, A. J. W., Kohlmann, F., Raza, A., Osadetz, K. G. & Sorjonen-Ward, P. 2009. A reappraisal of low-temperature thermochronology of the eastern Fennoscandia Shield and radiation-enhanced apatite fission-track annealing. In Thermochronological Methods: From Palaeotemperature Constraints to Landscape Evolution Models (Lisker, F., Ventura, B. & Glasmacher, U. A., eds), Geological Society, London Special Publications, 324, 193–216.
https://doi.org/10.1144/SP324.15
Koo, T. H., Lee, G. & Kim, J. W. 2016. Biogeochemical dissolution of nontronite by Shewanella oneidensis MR-1: Evidence of biotic illite formation. Applied Clay Science, 134, 13–18.
https://doi.org/10.1016/j.clay.2016.03.030
Kukkonen, I. T. & Jõeleht, A. 1996. Geothermal modelling of the lithosphere in the central Baltic Shield and its southern slope. Tectonophysics, 255, 25–45.
https://doi.org/10.1016/0040-1951(95)00131-X
Kurnosov, V. B., Sakharov, B. A. & Blinova, E. V. 2016. Clay minerals in sediments of the hydrothermally active southern trough in the Guaymas Basin (Gulf of California). Lithology and Mineral Resources, 51, 243–261.
https://doi.org/10.1134/S0024490216040040
Kuršs, V. 1992. Devonian Terrigenous Sedimentation on the Main Devonian Field. Zinatne, Riga, 208 pp.
Lanson, B. 1997. Decomposition of experimental X-ray diffraction patterns (profile fitting): A convenient way to study clay minerals. Clays and Clay Minerals, 45, 132–146.
https://doi.org/10.1346/CCMN.1997.0450202
Larson, S. A. & Tullborg, E. L. 1998. Why Baltic Shield zircons yield late Paleozoic, lower-intercept ages on U-Pb concordia. Geology, 26, 919–922.
https://doi.org/10.1130/0091-7613(1998)026<0919:WBSZYL>2.3.CO;2
Larson, S. A., Tullborg, E. L., Cederbom, C. & Stiberg, J. P. 1999. Sveconorwegian and Caledonian foreland basins in the Baltic Shield revealed by fission-track thermochronology. Terra Nova, 11, 210–215.
https://doi.org/10.1046/j.1365-3121.1999.00249.x
Lidmar-Bergstrom, K., Bonow, J. M. & Japsen, P. 2013. Stratigraphic Landscape Analysis and geomorphological paradigms: Scandinavia as an example of Phanerozoic uplift and subsidence. Global and Planetary Change, 100, 153–171.
https://doi.org/10.1016/j.gloplacha.2012.10.015
Mändar, H., Vajakas, T., Telsche, J. & Dinnebier, R. 1996. AXES1.4 – a program for the preparation of parameter input files for FULLPROF. Journal of Applied Crystallography, 29, 304–304.
https://doi.org/10.1107/S0021889895014993
Meidla, T. 2017. Ediacaran and Cambrian stratigraphy in Estonia: an updated review. Estonian Journal of Earth Sciences, 66, 152–160.
https://doi.org/10.3176/earth.2017.12
Mens, K. & Pirrus, E. 1986. Stratigraphical characteristics and development of Vendian–Cambrian Boundary Beds on the East European Platform. Geological Magazine, 123, 357–360.
https://doi.org/10.1017/S0016756800033446
Mens, K. & Pirrus, E. 1997. Cambrian. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 39–51. Estonian Academy Publishers, Tallinn.
Meunier, A. & Velde, B. D. 2004. Illite: Origins, Evolution and Metamorphism. Springer-Verlag, Berlin, Heidelberg, New York, 288 pp.
Murrell, G. R. & Andriessen, P. A. M. 2004. Unravelling a long-term multi-event thermal record in the cratonic interior of southern Finland through apatite fission track thermochronology. Physics and Chemistry of the Earth, 29, 695–706.
https://doi.org/10.1016/j.pce.2004.03.007
Nehring-Lefeld, M., Modliński, Z. & Swadowska, E. 1997. Thermal evolution of the Ordovician in the western margin of the East-European Platform: CAI and R0 data. Geological Quarterly, 41, 129–138.
Nikishin, A. M., Ziegler, P. A., Stephenson, R. A., Cloetingh, S. A. P. L., Furne, A. V., Fokin, P. A., Ershov, A. V., Bolotov, S. N., Korotaev, M. V., Alekseev, A. S., Gorbachev, V. I., Shipilov, E. V., Lankreijer, A., Bembinova, E. Y. & Shalimov, I. V. 1996. Late Precambrian to Triassic history of the East European Craton: Dynamics of sedimentary basin evolution. Tectonophysics, 268, 23–63.
https://doi.org/10.1016/S0040-1951(96)00228-4
Paškevicius, J. 1997. The Geology of the Baltic Republics. Lietuvos geologijos tarnyba, Vilnius, 387 pp.
Pehr, K., Love, G. D., Kuznetsov, A., Podkovyrov, V., Junium, C. K., Shumlyanskyy, L., Sokur, T. & Bekker, A. 2018. Ediacara biota flourished in oligotrophic and bacterially dominated marine environments across Baltica. Nature Communications, 9.
https://doi.org/10.1038/s41467-018-04195-8
Perens, R. & Vallner, L. 1997. Water-bearing formation. In Geology and Mineral Resources of Estonia (Raukas, A. & Teedumäe, A., eds), pp. 137–145. Estonian Academy Publishers, Tallinn.
Plancon, A. & Drits, V. A. 2000. Phase analysis of clays using an expert system and calculation programs for X-ray diffraction by two- and three-component mixed-layer minerals. Clays and Clay Minerals, 48, 57–62.
https://doi.org/10.1346/CCMN.2000.0480107
Pollastro, R. M. 1993. Considerations and applications of the illite-smectite geothermometer in hydrocarbon-bearing rocks of Miocene to Mississippian age. Clays and Clay Minerals, 41, 119–133.
https://doi.org/10.1346/CCMN.1993.0410202
Puura, V., Vaher, R. & Tuuling, I. 1999. Pre-Devonian landscape of the Baltic Oil-Shale Basin, NW of the Russian Platform. Geological Society Special Publication, 162, 75–83.
https://doi.org/10.1144/GSL.SP.1999.162.01.06
Renac, C. & Meunier, A. 1995. Reconstruction of palaeothermal conditions in a passive margin using illite-smectite mixed-layer series (Ba1 scientific deep drill-hole, Ardeche, France). Clay Minerals, 30, 107–118.
https://doi.org/10.1180/claymin.1995.030.2.03
Roberson, H. E. & Lahann, R. W. 1981. Smectite to illite conversion rates – effects of solution chemistry. Clays and Clay Minerals, 29, 129–135.
https://doi.org/10.1346/CCMN.1981.0290207
Rozanov, A. Y. & Łydka, K. (eds). 1987. Palaeogeography and Lithology of the Vendian and Cambrian of the Western East-European Platform. Wydawnictwa Geologiczne, Warsaw, 114 pp.
Sachsenhofer, R. F., Rantitsch, G., Hasenhuttl, C., Russegger, B. & Jelen, B. 1998. Smectite to illite diagenesis in early Miocene sediments from the hyperthermal western Pannonian Basin. Clay Minerals, 33, 523–537.
Sakharov, B. A., Lindgreen, H., Salyn A. L. & Drits, V. A. 1999. Mixed-layer kaolinite-illite-vermiculite in North Sea shales. Clay Minerals, 34, 333–344.
https://doi.org/10.1180/000985599546136
Sandler, A. & Saar, H. 2007. R ≥ 1-type illite-smectite formation at near-surface temperatures. Clay Minerals, 42, 245–253.
https://doi.org/10.1180/claymin.2007.042.2.09
Schoonmaker, J., Mackenzie, F. T. & Speed, R. C. 1986. Tectonic implications of illite/smectite diagenesis, Barbados accretionary prism. Clays and Clay Minerals, 34, 465–472.
https://doi.org/10.1346/CCMN.1986.0340413
Šliaupa, S. & Hoth, P. 2011. Geological evolution and resources of the Baltic Sea area from the Precambrian to the Quaternary. In The Baltic Sea Basin (Harff, J., Björck, S. & Hoth, P., eds), pp. 13–51. Springer, Berlin, Heidelberg.
https://doi.org/10.1007/978-3-642-17220-5_2
Somelar, P., Kirsimäe, K. & Srodon, J. 2009. Mixed-layer illite-smectite in the Kinnekulle K-bentonite, northern Baltic Basin. Clay Minerals, 44, 455–468.
https://doi.org/10.1180/claymin.2009.044.4.455
Somelar, P., Kirsimäe, K., Hints, R. & Kirs, J. 2010. Illitization of Early Paleozoic K-bentonites in the Baltic Basin: decoupling of burial- and fluid-driven processes. Clays and Clay Minerals, 58, 388–398.
https://doi.org/10.1346/CCMN.2010.0580309
Zdanavičiūtė, O. 1997. New data on thermal maturity of organic matter in source rocks. Litosfera, 1, 76–79 [in Lithuanian].
Zeck, H. P., Andriessen, P. A. M., Hansen, K., Jensen, P. K. & Rasmussen, B. L. 1988. Paleozoic paleo-cover of the southern part of the Fennoscandian Shield fission-track constraints. Tectonophysics, 149, 61–66.
https://doi.org/10.1016/0040-1951(88)90118-7
Zhang, G. X., Dong, H. L., Kim, J. W. & Eberl, D. D. 2007a. Microbial reduction of structural Fe3+ in nontronite by a thermophilic bacterium and its role in promoting the smectite to illite reaction. American Mineralogist, 92, 1411–1419.
https://doi.org/10.2138/am.2007.2498
Zhang, G. X., Kim, J. W., Dong, H. L. & Sommer, A. J. 2007b. Microbial effects in promoting the smectite to illite reaction: Role of organic matter intercalated in the interlayer. American Mineralogist, 92, 1401–1410.
https://doi.org/10.2138/am.2007.2331
Ziegler, P. A. 1987. Evolution of the Arctic–North Atlantic borderlands. In Petroleum Geology of North West Europe (Brooks, J. & Glennie, K. W., eds), pp. 1201–1204. Graham and Trotman, London.
Talyzina, N. M. 1998. Fluorescence intensity in Early Cambrian acritarchs from Estonia. Review of Palaeobotany and Palynology, 100, 99–108.
https://doi.org/10.1016/S0034-6667(97)00059-6
Talyzina, N. M., Moldowan, J. M., Johannisson, A. & Fago, F. J. 2000. Affinities of Early Cambrian acritarchs studied by using microscopy, fluorescence flow cytometry and biomarkers. Review of Palaeobotany and Palynology, 108, 37–53.
https://doi.org/10.1016/S0034-6667(99)00032-9
Tänavsuu-Milkeviciene, K., Plink-Björklund, P., Kirsimäe, K. & Ainsaar, L. 2009. Coeval versus reciprocal mixed carbonate–siliciclastic deposition, Middle Devonian Baltic Basin, Eastern Europe: implications from the regional tectonic development. Sedimentology, 56, 1250–1274.
https://doi.org/10.1111/j.1365-3091.2008.01032.x
Torsvik, T. H., Van der Voo, R., Preeden, U., Mac Niocaill, C., Steinberger, B., Doubrovine, P. V., van Hinsbergen, D. J. J., Domeier, M., Gaina, C., Tohver, E., Meert, J. G., McCausland, P. J. A. & Cocks, L. R. M. 2012. Phanerozoic polar wander, palaeogeography and dynamics. Earth-Science Reviews, 114, 325–368.
https://doi.org/10.1016/j.earscirev.2012.06.007
Tuuling, I. 2019. The Leba Ridge–Riga–Pskov Fault Zone – a major East European Craton interior dislocation zone and its role in the early Palaeozoic development of the platform cover. Estonian Journal of Earth Sciences, 68, 161–189.
https://doi.org/10.3176/earth.2019.12
Valverde-Vaquero, P., Dorr, W., Belka, Z., Franke, W., Wiszniewska, J. & Schastok, J. 2000. U–Pb single-grain dating of detrital zircon in the Cambrian of central Poland: implications for Gondwana versus Baltica provenance studies. Earth and Planetary Science Letters, 184, 225–240.
https://doi.org/10.1016/S0012-821X(00)00312-5
Velde, B. 1995. Use of the smectite to illite conversion reaction model – effects of order of magnitude. Bulletin Des Centres De Recherches Exploration-Production Elf Aquitaine, 19, 235–242.
Velde, B. & Espitalie, J. 1989. Comparison of kerogen maturation and illite/smectite composition in diagenesis. Journal of Petroleum Geology, 12, 103–110.
https://doi.org/10.1111/j.1747-5457.1989.tb00223.x
Velde, B. & Vasseur, G. 1992. Estimation of the diagenetic smectite to illite transformation in time-temperature space. American Mineralogist, 77, 967–976.
Wei, H., Roaldset, E. & Bjoroy, M. 1996. Parallel reaction kinetics of smectite to illite conversion. Clay Minerals, 31, 365–376.
https://doi.org/10.1180/claymin.1996.031.3.07
Whitney, G. & Northrop, H. R. 1988. Experimental investigation of the smectite to illite reaction – dual reaction-mechanisms and oxygen-isotope systematics. American Mineralogist, 73, 77–90.