The diversity, humus status, productivity and environment protection ability of cropland soils were studied in the mild and wet pedoclimatic conditions of Estonia, located in the mixed-forest region of the North European temperate zone. Proceeding from the pedocentric principle, the soil cover is treated as a causal factor largely determining the land use, productivity level, soil management technology and environmental status of the area. The research is based on soil data from seven arable land parcels of three experimental stations, where the Cambisols, Luvisols, Retisols, Leptosols and Gleysols are dominating. The taxonomic heterogeneity and contrastiveness of arable soils were estimated at the most detailed level of soil taxa. To determine the humus cover types (pro humus forms) and to evaluate the agronomical quality of soils, the guidelines elaborated for local pedo-ecological conditions were employed. The environment protection ability of soils was evaluated as a complex indicator, which comprises the biological and physical properties of soil cover, soil climate and the character of soil cover substratum. For quantifying the pedodiversity of soil cover and the contrastiveness of soil taxa, it is recommended to use the mineral soil pedo-ecological matrix with lithogenetic and moisture scalars, and the matrix of top- and subsoil texture. The best indicators of the pedodiversity of arable lands are the soil classification taxa determined at the most detailed level and the statistically elaborated data about their spatial distribution and properties. For the precise land use the evaluation of the agronomical quality of soil cover and its suitability for crops in relation to its whole heterogeneity is indispensable. The most informative pedodiversity indicator of arable soil humus status is the humus cover type. Additionally, the problems connected with pedo-ecological equivalence and soil type-specific biodiversity are discussed. The quantitative indicators of pedodiversity enable arranging the use of croplands in harmony with the pedo-ecological properties soil cover.
Arinushkina, E. V. 1970. Rukovodstvo po himicheskomu analizu pochv [Instruction for Chemical Analysis of Soil]. University of Moscow, Moscow, 487 pp. [in Russian].
Arold, I. 2005. Eesti maastikud [Estonian Landscapes]. Tartu Ülikooli Kirjastus, Tartu, 433 pp. [in Estonian, with English summary].
Astover, A., Kõlli, R., Roostalu, H., Reintam, E. & Leedu, E. 2012. Mullateadus [Soil Science]. Eesti Maaülikool, Tartu, 486 pp. [in Estonian].
Astover, A., Reintam, E., Leedu, E. & Kõlli, R. 2013. Muldade väliuurimine [Field Research of Soils]. Eesti Loodusfoto, Tartu, 70 pp. [in Estonian].
Beylich, A., Graefe, U. & Elsner, D.-C. 2015. Response of microannelids to tillage at soil-monitoring sites in Schleswig-Holstein, Germany. Soil Organisms, 87, 121−135.
Blum, W. E. H. 2002. The role of soils in sustaining society and the environment: realities and challenges for the 21st century. In Keynote Lectures, 17th World Congress of Soil Science, 14–21 August 2002, IUSS, Bangkok, pp. 66−86.
Cardinale, B., Matulich, K., Hooper, D. U., Byrnes, J. E., Duffy, E., Gamfeldt, L., Balvanera, P., O’Connor, M. I. & Gonzalez, A. 2011. The functional role of producer biodiversity in ecosystems. American Journal of Botany, 98, 572−592.
https://doi.org/10.3732/ajb.1000364
Costantini, E. A. C. & L’Abate, G. 2016. Beyond the concept of dominant soil: preserving pedodiversity in upscaling soil maps. Geoderma, 271, 243−253.
https://doi.org/10.1016/j.geoderma.2015.11.024
[EA] Environment Agency 2006. The Development and Use of Soil Quality Indicators for Assessing the Role of Soil in Environmental Interactions. Science Project SC030265. Environment Agency, Bristol (UK), 241 pp.
[ELB] Estonian Land Board 2001. Mullastiku kaart [Map of Soils]. http://geoportaal.maaamet.ee [accessed 16.03.2017].
[FAO] Food and Agriculture Organization 2006. Guidelines for Soil Description. 4th ed., FAO, Rome, 97 pp.
Fisher, G., van Velthuizen, H., Sahah, M. & Nachtergaele, F. O. 2002. Global Agro-Ecological Assessment for Agriculture in the 21st Century: Methodology and Results. IIASA, FAO, Laxenburg–Rome, Austria–Italy, 119 pp.
Garcia-Oliva, F. & Masera, O. R. 2004. Assessment and measurement issues related to soil carbon sequestration in land-use, land-use change, and forestry (LULUF) projects under the Kyoto Protocol. Climate Change, 65, 347−364.
https://doi.org/10.1023/B:CLIM.0000038211.84327.d9
Griffiths, B. S. & Lemanceau, P. 2016. Soil biodiversity and ecosystem functions across Europe: a transect covering variations in bio-geographical zones, land use and soil properties. Applied Soil Ecology, 97, 1−134.
https://doi.org/10.1016/j.apsoil.2015.07.017
[GSE] Geological Survey of Estonia 1999. Map in scale 1:400,000. In Quaternary Deposits of Estonia (Kajak, K., Raukas, A., Karukäpp, R. & Rattas, M., eds). GSE, Tallinn.
Guo, Y., Gong, P. & Amundson, R. 2003. Pedodiversity in the United States of America. Geoderma, 117, 99−115.
https://doi.org/10.1016/S0016-7061(03)00137-X
Haslmayr, H.-P., Geitner, C., Sutor, G., Knoll, A. & Baumgarten, A. 2016. Soil function evaluation in Austria – development, concepts and examples. Geoderma, 264, 379−387.
https://doi.org/10.1016/j.geoderma.2015.09.023
Ibáñez, J. J. & Bockheim, J. G. (eds). 2013. Pedodiversity. CRC Press, Boca Raton, 233 pp.
Ibáñez, J. J., De-Alba, S., Lobo, A., Zucarello, V. & Yaalon, D. H. 1998. Pedodiversity and global soil patterns at coarse scales (with Discussion). Geoderma, 83, 171−192.
https://doi.org/10.1016/S0016-7061(97)00147-X
Ibáñez, J. J., Saldana, A. & Olivera, D. 2012. Biodiversity and pedodiversity: a matter of coincidence? Spanish Journal of Soil Science, 2, 8−12.
[IUSS] IUSS Working Group WRB 2015. World Reference Base for Soil Resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. FAO, Rome, 192 pp.
Jabiol, B., Zanella, A., Bonge, J.-F., Sartori, G., Englisch, M., van Delft, B., de Waal, R. & Le Bayon, R.-C. 2013. A proposal for including humus forms in the World Reference Base for Soil Resources (WRB-FAO). Geoderma, 192, 286−294.
https://doi.org/10.1016/j.geoderma.2012.08.002
Jeffery, S., Gardi, C., Jones, A., Montanarella, L., Marmo, L., Miko, L., Ritz, K., Peres, G., Römbke, J. & van der Putten, W. H. (eds). 2010. European Atlas of Soil Biodiversity. EC, PO of EU, Luxembourg, 128 pp.
Jones, A., Montanarella, L. & Jones, R. (eds). 2005. Soil Atlas of Europe. European Soil Bureau Network, EC, PO of EU, Luxembourg, 128 pp.
Kachinskij, N. A. 1965. Fizika pochv [Soil Physics]. Moscow University Press, Moscow, 323 pp. [in Russian].
Kasparinskis, R. & Nikodemus, O. 2012. Influence of environmental factors on the spatial distribution and diversity of forest soil in Latvia. Estonian Journal of Earth Sciences, 61, 48−64.
https://doi.org/10.3176/earth.2012.1.04
Kokk, R. & Rooma, I. 1974. Mullaliikide levik. Agromullastikuline rajoneerimine. Kõlvikute mullastiku iseloomustus [Distribution of soil species. Division into agro-soil districts. Characterization of land use unit soils]. In Eesti NSV mullastik arvudes, I [Soils of the Estonian SSR in Numbers, I], pp. 3−73. ENSV PM TTIV, Tallinn [in Estonian].
Kokk, R. & Rooma, I. 1978. Eesti NSV haritavate maade muldade mõningate keemiliste, füüsikalis-keemiliste ja füüsikaliste omaduste iseloomustus [Characterization of some chemical, physico-chemical and physical properties of arable land soils in Estonian SSR]. In Eesti NSV mullastik arvudes, II [Soils of the Estonian SSR in Numbers, II], pp. 3−66. ENSV PM TTIV, Tallinn [in Estonian].
Kokk, R. & Rooma, I. 1983. Haritavad mullad [Arable soils]. In Eesti NSV mullastik arvudes, III [Soils of the Estonian SSR in Numbers, III], pp. 3−23. ENSV PM TTIV, Tallinn [in Estonian].
Kõlli, R. 1987. Pedoékologicheskij analiz fitoproduktivnosti biogeokhimicheskikh potokov veshchestv i gumusovogo sostoyaniya v estestvennykh i kul'turnykh écosistemakh [Pedo-ecological Analysis of Phytoproductivity, Biogeochemical Turnover of Substances and Humus Status in Natural and Cultural Ecosystems]. D.Sc Dissertation, Estonian Agricultural Academy, Tartu, 553 pp. [in Russian].
Kõlli, R. 1994. Classification of arable soils’ humus cover. Transactions of Estonian Agricultural University, 178, 82−86 [in Estonian].
Kõlli, R. 2017. Influence of land use change on fabric of humus cover (pro humus form). Applied Soil Ecology, 123, http://dx.doi.org/10.1016/j.apsoil.2017.06.022.
https://doi.org/10.1016/j.apsoil.2017.06.022
Kõlli, R., Ellermäe, O. & Soosaar, K. 2004. Soil cover as a factor influencing the status of the environment. Polish Journal of Soil Science, 37, 65−75.
Kõlli, R., Ellermäe, O. & Teras, T. 2008. Eesti muldade digitaalne kogu [Digital Collection of Estonian Soils]. http://mullad.emu.ee [accessed 15.03.2017].
Kõlli, R., Köster, T., Rannik, K. & Tõnutare, T. 2009. Complex indicators reflecting soil functioning activity. Journal of Plant Nutrition and Soil Science, 172, 360−362.
https://doi.org/10.1002/jpln.200900031
Köster, T. & Kõlli, R. 2013. Interrelationships between soil cover and plant cover depending on land use. Estonian Journal of Earth Sciences, 62, 93–112.
https://doi.org/10.3176/earth.2013.08
Krasilnikov, P., Calderón, N. E. G. & Palacios, M. S. G. 2007. Soils developed on different parent materials. Terra Latinoamericana, 25, 335−344.
Landis, D. A. 2017. Designing agricultural landscapes for biodiversity-based ecosystem services. Basic and Applied Ecology, 18, 1−10.
https://doi.org/10.1016/j.baae.2016.07.005
Marcinkonis, S., Karpavičiene, B. & Fullen, M. A. 2015. Linking floral biodiversity with nitrogen and carbon translocations in semi-natural grasslands in Lithuania. Ekológia (Bratislava), 34, 137−146.
McBratney, A. & Minasny, B. 2007. On measuring pedodiversity. Geoderma, 141, 149−154.
https://doi.org/10.1016/j.geoderma.2007.05.012
McBratney, A., Field, D. J & Koch, A. 2014. The dimensions of soil security. Geoderma, 213, 203−213.
https://doi.org/10.1016/j.geoderma.2013.08.013
Minasny, B., McBratney, A. B. & Hartemink, A. E. 2010. Global pedodiversity, taxonomic distance, and the World Reference Base. Geoderma, 155, 132−139.
https://doi.org/10.1016/j.geoderma.2009.04.024
Montanarella, L. 2003. The EU thematic strategy on soil protection. In Contributions International Workshop “Land degradation” (Jones, R. J. A. & Montanarella, L., eds), pp. 15−29, EC JRC, EUR 20688 EN.
Orgiazzi, A., Bardgett, R. D., Barrios, E., Behan-Pelletier, V., Briones, M. J. I., Chotte, J.-L., De Deyn, G. B., Eggleton, P., Fierer, N., Fraser, T., Hedlund, K., Jeffery, S., Johnson, N. C., Jones, A., Kandeler, E., Kaneko, N., Lavelle, P., Lemanceau, P., Miko, L., Montanarella, L., Moreira, F. M. S., Ramirez, K. S., Scheu, S., Singh, B. K., Six, J., van der Putten, W. H. & Wall, D. H. (eds). 2016. Global Soil Biodiversity Atlas. EC, PO of EU, Luxembourg, 180 pp.
Oueslati, I., Allamano, P., Bonifacio, E. & Claps, P. 2013. Vegetation and topographic control on spatial variability of soil organic carbon. Pedosphere, 23, 48−58.
https://doi.org/10.1016/S1002-0160(12)60079-4
Panagos, P., Blum, W. E. H., Toth, G. & Montanarella, L. 2010. Indicators for the Sustainable Use of Soil Resources. SoilTrEC Stakeholders Meeting. EC, JRC, IES, Stresa.
Phillips, J. D. & Marion, D. A. 2005. Biomechanical effects, lithological variations, and local pedodiversity in some forest soils of Arkansas. Geoderma, 124, 73−89.
https://doi.org/10.1016/j.geoderma.2004.04.004
Rannik, K., Kõlli, R., Kukk, L. & Fullen, M. 2016. Pedodiversity of three experimental stations in Estonia. Geoderma Regional, 7, 293−299.
https://doi.org/10.1016/j.geodrs.2016.05.002
Reintam, L. 2002. Correlation of the diagnostic properties of soil genetic units for harmonisation of soil map units. In Soil Classification 2001, pp. 205−210. ESB Research Report No. 7, Luxembourg.
Reintam, L., Rooma, I., Kull, A. & Kõlli, R. 2005. Soil information and its application in Estonia. In Soil Resources of Europe, 2nd ed. (Jones, R. J. A., Houskova, B., Bullock, P. & Montanarella, L., eds), pp. 121−132. ESB, OOP, EC, Luxembourg.
Rossiter, D. G. 1996. A theoretical framework for land evaluation (with Discussion). Geoderma, 72, 165−202.
https://doi.org/10.1016/0016-7061(96)00031-6
Rousevell, M. D. A., Ewert, F., Reginster, I., Leemans, R. & Carter, T. R. 2005. Future scenarios of European agricultural land use II. Projecting changes in cropland and grassland. Agriculture, Ecosystems & Environment, 107, 117−135.
https://doi.org/10.1016/j.agee.2004.12.002
Serrano, E. & Ruiz-Flano, P. 2007. Geodiversity. A theoretical and applied concept. Geographica Helvetica, 62, 140−147.
https://doi.org/10.5194/gh-62-140-2007
Schmidt, M. W. I., Torn, M. S., Abiven, S., Dittmar, T., Guggenbergen, G., Janssens, I. A., Kleber, M., Kögel-Knaber, I., Lehmann, J., Manning, D. A. C., Nannipieri, P., Rasse, D. P., Weiner, S. & Trumbore, S. E. 2011. Persistence of soil organic matter as an ecosystem property. Nature, 478, 49–56.
https://doi.org/10.1038/nature10386
[SPAC] Soil and Plant Analysis Council 1992. Handbook on Reference Methods for Soil Analysis. University of Wisconsin, Madison, 202 pp.
Suuster, E., Ritz, C., Roostalu, H., Reintam, E., Kõlli, R. & Astover, A. 2011. Soil bulk density pedotransfer functions of the humus horizon in arable soils. Geoderma, 163, 74–82.
https://doi.org/10.1016/j.geoderma.2011.04.005
Swift, M. J., Izac, A.-M. N. & van Noordwijk, M. 2004. Biodiversity and ecosystem services in agricultural landscapes − are we asking the right questions? Agriculture, Ecosystems & Environment, 104, 113–134.
https://doi.org/10.1016/j.agee.2004.01.013
Topoliantz, S., Ponge, J.-F. & Viaux, P. 2000. Earthworm and enchytraeid activity under different arable farming systems, as exemplified by biogenic structures. Plant and Soil, 225, 39−51.
https://doi.org/10.1023/A:1026537632468
Tscharntke, T., Klein, A. M., Kruess, A., Steffan-Dewenter, I. & Thies, C. 2005. Landscape perspectives on agricultural intensification and biodiversity – ecosystem service management. Ecology Letters, 8, 857−874.
https://doi.org/10.1111/j.1461-0248.2005.00782.x
Turbé, A., De Toni, A., Benito, P., Lavelle, P., Lavelle, P., Ruiz, N., Van der Putten, W. H., Labouze, E. & Mudgal, S. 2010. Soil Biodiversity: Functions, Threats and Tools for Policy Makers. Bio Intelligence Service, IRD and NIOO, Report for EC, 250 pp.
Zanella, A., Ponge, J.-F., Jabiol, B., Sartori, G., Kolb, E., Le Bayon, C., De Waal, R., Van Delft, B., Vacca, A., Gobat, J. M., Serra, G., Chersich, S., Andreetta, A., Kõlli, R., Brun, J. J., Cools, N., Englisch, M., Hager, H., Katzensteiner, K., Brethes, A., Broll, G., Graefe, U., Wolf, U., Juilleret, J., Garlato, A., Galvan, P., Zampedri, R., Frizzera, L., Baritz, R., Banas, D., Kemmers, R., Tatti, D., Fontanella, F., Menard, R., Filoso, C., Dibona, R., Cattaneo, D. & Viola, F. 2017. Humusica 1, article 5: Terrestrial humus systems and forms − Keys of classification of terrestrial humus systems and forms. Applied Soil Ecology, 122, 75−86.
https://doi.org/10.1016/j.apsoil.2017.06.012