Karst terrain is widely distributed globally, posing one of the most significant issues for civil engineering and public safety. Electrical resistivity tomography (ERT) is regarded as the most suitable method for exploring subsurface karst features. Nevertheless, ambiguities in the ERT inversion process can arise due to specific geological conditions. In this study, we used measurements obtained in the area next to a recently developed gypsum karst sinkhole in Latvia and 3D geophysical modelling to specifically analyse the limitations in identifying near-surface air-filled karst voids by ERT. Our results emphasise that due to the 3D effect, even the recent sinkhole may be undetectable in ERT data, despite the placement of ERT profiles directly above the overhanging part of the 7-m-deep sinkhole. The 2D synthetic modelling results suggest that a karst sinkhole of similar size to the one surveyed in the field should be easily recognised. In contrast, the results obtained with 3D synthetic modelling reveal almost no indication of a sinkhole in the modelled profiles. We conclude that 2D synthetic modelling cannot always be used to assess the possibilities of identifying subsurface cavities with the ERT method. Reliable assessment can only be achieved using 3D synthetic modelling techniques. Our results demonstrate that problems with detecting air-filled karst sinkholes can arise not only in areas where surrounding rocks have a high electrical resistivity but also where surrounding rocks have a low resistivity.
Agisoft. 2021. Agisoft Metashape User Manual: Professional Edition, Version 1.7.
Al-Hameedawi, M. M., Thabit, J. M. and Al-Menshed, F. H. 2021. Some notes about three types of inhomogeneity and their effect on the electrical resistivity tomography data. Journal of Applied Geophysics, 191, 104360.
https://doi.org/10.1016/j.jappgeo.2021.104360
Brangulis, A. J., Kuršs, V., Misāns, J. and Stinkulis, Ģ. 1998. Latvijas ģeoloģija: 1:500 000 mēroga ģeoloģiskā karte un pirmskvartāra nogulumu apraksts (Geology of Latvia: Geological map in scale 1:500 000 and description of bedrock). State Geological Survey, Riga.
Brook, M. S. 2019. Engineering geophysics and the 2017 New Zealand Ground Investigation Specification guidelines. Engineering Geology, 252, 164–167.
https://doi.org/10.1016/j.enggeo.2019.02.017
Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. and Bosch, F. P. 2011. Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal, 19, 1169–1180.
https://doi.org/10.1007/s10040-011-0746-x
Drahor, M. G. 2019. Identification of gypsum karstification using an electrical resistivity tomography technique: The case-study of the Sivas gypsum karst area (Turkey). Engineering Geology, 252, 78–98.
https://doi.org/10.1016/j.enggeo.2019.02.019
Dreybrodt, W., Romanov, D. and Gabrovsek, F. 2002. Karstification below dam sites: a model of increasing leakage from reservoirs. Environmental Geology, 42(5), 518–524.
https://doi.org/10.1007/s00254-001-0514-7
Džeriņš, P., Karušs, J., Lamsters, K., Ješkins, J. and Ķelpe, A. 2023. Investigation of buried karst sinkholes under a bog using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Earth Surface Processes and Landforms, 48(10), 1909–1925.
https://doi.org/10.1002/esp.5593
El-Qady, G., Hafez, M., Abdalla, M. A. and Ushijima, K. 2005. Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. Journal of Cave and Karst Studies, 67(3), 174–181.
Festa, V., Tripaldi, S., Siniscalchi, A., Acquafredda, P., Fiore, A., Mele, D. and Romano, G. 2016. Geoelectrical resistivity variations and lithological composition in coastal gypsum rocks: A case study from the Lesina Marina area (Apulia, southern Italy). Engineering Geology, 202, 163–175.
https://doi.org/10.1016/j.enggeo.2015.12.026
Ford, D. and Williams, P. 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Hoboken, NJ.
https://doi.org/10.1002/9781118684986
Geotomo Software. 2017. User manual: Rapid 2-D Resistivity & IP inversion using the least-squares method.
Gökkaya, E., Gutiérrez, F., Ferk, M. and Görüm, T. 2021. Sinkhole development in the Sivas gypsum karst, Turkey. Geomorphology, 386, 107746.
https://doi.org/10.1016/j.geomorph.2021.107746
Guinea, A., Playa, E., Rivero, L., Himi, M. and Bosch, R. 2010. Geoelectrical classification of gypsum rocks. Surveys in Geophysics, 31(6), 557–580.
https://doi.org/10.1007/s10712-010-9107-x
Gutiérrez, F., Cooper, A. H. and Johnson, K. S. 2008. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environmental Geology, 53(5), 1007–1022.
https://doi.org/10.1007/s00254-007-0728-4
Gutiérrez, F., Parise, M., De Waele, J. and Jourde, H. 2014. A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews, 138, 61–88.
https://doi.org/10.1016/j.earscirev.2014.08.002
Hodireva, V. 1997. Latvijas dolomītu litoloģiski rūpnieciskie tipi (Lithological industrial types of Latvian Devonian dolomites). PhD thesis. University of Latvia.
Ivanova, O. and Nulle, I. 2002. Kristāliskā pamatklintāja virsmas strukturālā karte. Mērogs 1:500 000 (Top crystalline basement depth structural map. Scale 1:500 000). In Latvijas tektonika (Tectonics of Latvia) (Brangulis, A. J. and Kaņevs, S., eds). State Geological Survey, Riga.
Karušs, J., Lamsters, K., Poršņovs, D., Zandersons, V. and Ješkins, J. 2021. Geophysical mapping of residual pollution at the remediated Inčukalns acid tar lagoon, Latvia. Estonian Journal of Earth Sciences, 70(3), 140–151.
https://doi.org/10.3176/earth.2021.10
Kaufmann, G., Romanov, D. and Nielbock, R. 2011. Cave detection using multiple geophysical methods: Unicorn cave, Harz Mountains, Germany. Geophysics, 76(3), B71–B77.
https://doi.org/10.1190/1.3560245
Kuršs, V. and Stinkule, A. 1997. Latvijas derīgie izrakteņi (Mineral Deposits of Latvia). University of Latvia, Riga.
Lamsters, K., 2012. Drumlins and related glaciogenic landforms of the Madliena Tilted Plain, Central Latvian Lowland. Bulletin of the Geological Society of Finland, 84(1), 45–57.
https://doi.org/10.17741/bgsf/84.1.004
Lamsters, K. and Zelčs, V. 2015. Subglacial bedforms of the Zemgale Ice Lobe, south-eastern Baltic. Quaternary International, 386, 42–54.
https://doi.org/10.1016/j.quaint.2014.10.006
Lamsters, K., Kalińska-Nartiša, E., Zelčs, V. and Alexanderson, H. 2017. New luminescence ages reveal Early to Middle Weichselian deposits in central Latvia. Geological Quarterly, 61(2), 480–490.
https://doi.org/10.7306/gq.1349
Lamsters, K., Karušs, J., Stūrmane, A., Ješkins, J. and Džeriņš, P. 2022. Mapping of large-scale diapir structures at the paleo-ice tongue bed in western Latvia from geophysical investigations and borehole data. Quaternary International, 630, 3–16.
https://doi.org/10.1016/j.quaint.2020.12.003
LEGMC (Latvian Environment, Geology and Meteorology Centre). 2021. Meteorological data from station “Riga-University”.
https://videscentrs.lvgmc.lv/ (accessed 2023-01-19).
Levins, I. and Buzajevs, V. 1999. Pazemes ūdeņu aizsargātības karte. Mērogs 1:500 000 (Groundwater vulnerability map of Latvia, scale 1:500 000). Report No. 12074. State Geological Survey, Riga.
Loke, M. H. 2004. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Res2dinv 3.5 Software.
Loke, M. H. and Barker, R. D. 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting, 44, 131–152.
https://doi.org/10.1111/j.1365-2478.1996.tb00142.x
Martel, R., Castellazzi, P., Gloaguen, E., Trépanier, L. and Garfias, J. 2018. ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City. Geomorphology, 310, 45–56.
https://doi.org/10.1016/j.geomorph.2018.03.003
Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., Teixido, T., Ruano, P., Peña, J. A. et al. 2014. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics, 107, 149–162.
https://doi.org/10.1016/j.jappgeo.2014.05.021
Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., González-Castillo, L., Ruano, P., Calaforra, J. M. et al. 2015. Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Engineering Geology, 193, 38–48.
https://doi.org/10.1016/j.enggeo.2015.04.011
McGrath, R. J., Styles, P., Thomas, E. and Neale, S. 2002. Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain. Environmental Geology, 42, 552–557.
https://doi.org/10.1007/s00254-001-0519-2
Palacky, G. V. 1987. Resistivity characteristics of geologic targets. In Electromagnetic Methods in Applied Geophysics – Theory (Nabighian, M., ed.). Society of Exploration Geophysicists, Tulsa, OK, 1, 53–129.
https://doi.org/10.1190/1.9781560802631.ch3
Pando, L., Pulgar, J. A. and Gutiérrez-Claverol, M. 2013. A case of man-induced ground subsidence and building settlement related to karstified gypsum (Oviedo, NW Spain). Environmental Earth Sciences, 68, 507–519.
https://doi.org/10.1007/s12665-012-1755-3
Paukstys, B. and Narbutas, V. 1996. Gypsum karst of the Baltic Republics. International Journal of Speleology, 25(3), 279–284.
https://doi.org/10.5038/1827-806X.25.3.21
Prols, J., Driķis, V. and Levins, G. 1997. Vides aizsardzības pasākumu programma Rīgas ģipšakmens atradnes Salaspils iecirkņa izstrādei (Program of environmental protection measures for the development of the Salaspils precinct of Riga gypsum deposit). Latģeo report. State Geological Fund, Riga.
Rao, Y., Guo, Y. and Xu, D. 2021. Detecting karst voids based on dominant frequencies of seismic profiles. Pure and Applied Geophysics, 178(8), 3057–3067.
https://doi.org/10.1007/s00024-021-02792-1
Reynolds, J. M. 1997. An Introduction to Applied and Environmental Geophysics. Wiley, New York.
Satitpittakul, A., Vachiratienchai, C. and Siripunvaraporn, W. 2013. Factors influencing cavity detection in karst terrain on two-dimensional (2-D) direct current (DC) resistivity survey: A case study from the western part of Thailand. Engineering Geology, 152(1), 162–171.
https://doi.org/10.1016/j.enggeo.2012.10.015
Sevil, J., Gutiérrez. F., Zarroca, M., Desir, G., Carbonel, D., Guerrero, J. et al. 2017. Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Mantled evaporite karst of Zaragoza city, NE Spain. Engineering Geology, 231, 9–20.
https://doi.org/10.1016/j.enggeo.2017.10.009
Švēde, A. 2001. Ģeoekoloģisko izpētes darbu atskaite. Objekts: Salaspils ģipšakmens atradne, zemes dzīļu monitoringa sistēmas izveidošana (Report of geo-ecological research works. Object: Salaspils gypsum deposit, development of ground monitoring system). Report No. 12781. Ltd “Ģeo Izpēte”. State Geological Survey, Riga.
Tolstovs, J., Tracevska, L., Sičovs, G. 1991. Отчет о результатах радиолокационных и инженерно-геологических работ в районе Саласпилсского месторождения гипса – II этап (Overview of the results of radiolocation and engineering geological works at Salaspils gypsum deposit area, stage II. Riga). No. 10824. State Geological Survey, Riga.
Tuckwell, G., Grossey, T., Owen, S. and Stearns, P. 2008. The use of microgravity to detect small distributed voids and low-density ground. Quarterly Journal of Engineering Geology and Hydrogeology, 41(3), 371–380.
https://doi.org/10.1144/1470-9236/07-224
Zhou, W., Beck, B. F. and Adams, A. L. 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomography. Environmental Geology, 42, 922–928.
https://doi.org/10.1007/s00254-002-0594-z