ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Earth Science cover
Estonian Journal of Earth Sciences
ISSN 1736-7557 (Electronic)
ISSN 1736-4728 (Print)
Impact Factor (2022): 1.1
Research article
Limitations in detectability of air-filled gypsum karst cavity by electrical resistivity tomography: a case study from the Baltic Devonian sedimentary basin; pp. 185–196
PDF | https://doi.org/10.3176/earth.2023.84

Authors
Jānis Karušs, Pēteris Džeriņš, Kristaps Lamsters, Jurijs Ješkins, Ģirts Stinkulis
Abstract

Karst terrain is widely distributed globally, posing one of the most significant issues for civil engineering and public safety. Electrical resistivity tomography (ERT) is regarded as the most suitable method for exploring subsurface karst features. Nevertheless, ambiguities in the ERT inversion process can arise due to specific geological conditions. In this study, we used measurements obtained in the area next to a recently developed gypsum karst sinkhole in Latvia and 3D geophysical modelling to specifically analyse the limitations in identifying near-surface air-filled karst voids by ERT. Our results emphasise that due to the 3D effect, even the recent sinkhole may be undetectable in ERT data, despite the placement of ERT profiles directly above the overhanging part of the 7-m-deep sinkhole. The 2D synthetic modelling results suggest that a karst sinkhole of similar size to the one surveyed in the field should be easily recognised. In contrast, the results obtained with 3D synthetic modelling reveal almost no indication of a sinkhole in the modelled profiles. We conclude that 2D synthetic modelling cannot always be used to assess the possibilities of identifying subsurface cavities with the ERT method. Reliable assessment can only be achieved using 3D synthetic modelling techniques. Our results demonstrate that problems with detecting air-filled karst sinkholes can arise not only in areas where surrounding rocks have a high electrical resistivity but also where surrounding rocks have a low resistivity.

References

Agisoft. 2021. Agisoft Metashape User Manual: Professional Edition, Version 1.7

Al-Hameedawi, M. M., Thabit, J. M. and Al-Menshed, F. H. 2021. Some notes about three types of inhomogeneity and their effect on the electrical resistivity tomography data. Journal of Applied Geophysics191, 104360.
https://doi.org/10.1016/j.jappgeo.2021.104360

Brangulis, A. J., Kuršs, V., Misāns, J. and Stinkulis, Ģ. 1998. Latvijas ģeoloģija: 1:500 000 mēroga ģeoloģiskā karte un pirmskvartāra nogulumu apraksts (Geology of Latvia: Geological map in scale 1:500 000 and description of bedrock). State Geological Survey, Riga.

Brook, M. S. 2019. Engineering geophysics and the 2017 New Zealand Ground Investigation Specification guidelines. Engineering Geology252, 164–167.
https://doi.org/10.1016/j.enggeo.2019.02.017

Chalikakis, K., Plagnes, V., Guerin, R., Valois, R. and Bosch, F. P. 2011. Contribution of geophysical methods to karst-system exploration: an overview. Hydrogeology Journal19, 1169–1180. 
https://doi.org/10.1007/s10040-011-0746-x

Drahor, M. G. 2019. Identification of gypsum karstification using an electrical resistivity tomography technique: The case-study of the Sivas gypsum karst area (Turkey). Engineering Geology252, 78–98.
https://doi.org/10.1016/j.enggeo.2019.02.019

Dreybrodt, W., Romanov, D. and Gabrovsek, F. 2002. Karstification below dam sites: a model of increasing leakage from reservoirs. Environmental Geology42(5), 518–524.
https://doi.org/10.1007/s00254-001-0514-7

Džeriņš, P., Karušs, J., Lamsters, K., Ješkins, J. and Ķelpe, A. 2023. Investigation of buried karst sinkholes under a bog using ground penetrating radar (GPR) and electrical resistivity tomography (ERT). Earth Surface Processes and Landforms48(10), 1909–1925.
https://doi.org/10.1002/esp.5593

El-Qady, G., Hafez, M., Abdalla, M. A. and Ushijima, K. 2005. Imaging subsurface cavities using geoelectric tomography and ground-penetrating radar. Journal of Cave and Karst Studies67(3), 174–181.

Festa, V., Tripaldi, S., Siniscalchi, A., Acquafredda, P., Fiore, A., Mele, D. and Romano, G. 2016. Geoelectrical resistivity variations and lithological composition in coastal gypsum rocks: A case study from the Lesina Marina area (Apulia, southern Italy). Engineering Geology202, 163–175.
https://doi.org/10.1016/j.enggeo.2015.12.026

Ford, D. and Williams, P. 2007. Karst Hydrogeology and Geomorphology. John Wiley & Sons, Hoboken, NJ.
https://doi.org/10.1002/9781118684986

Geotomo Software. 2017. User manual: Rapid 2-D Resistivity & IP inversion using the least-squares method.

Gökkaya, E., Gutiérrez, F., Ferk, M. and Görüm, T. 2021. Sinkhole development in the Sivas gypsum karst, Turkey. Geomorphology386, 107746.
https://doi.org/10.1016/j.geomorph.2021.107746

Guinea, A., Playa, E., Rivero, L., Himi, M. and Bosch, R. 2010. Geoelectrical classification of gypsum rocks. Surveys in Geophysics31(6), 557–580.
https://doi.org/10.1007/s10712-010-9107-x

Gutiérrez, F., Cooper, A. H. and Johnson, K. S. 2008. Identification, prediction, and mitigation of sinkhole hazards in evaporite karst areas. Environmental Geology53(5), 1007–1022.
https://doi.org/10.1007/s00254-007-0728-4

Gutiérrez, F., Parise, M., De Waele, J. and Jourde, H. 2014. A review on natural and human-induced geohazards and impacts in karst. Earth-Science Reviews138, 61–88.
https://doi.org/10.1016/j.earscirev.2014.08.002

Hodireva, V. 1997. Latvijas dolomītu litoloģiski rūpnieciskie tipi (Lithological industrial types of Latvian Devonian dolomites). PhD thesis. University of Latvia. 

Ivanova, O. and Nulle, I. 2002. Kristāliskā pamatklintāja virsmas strukturālā karte. Mērogs 1:500 000 (Top crystalline basement depth structural map. Scale 1:500 000). In Latvijas tektonika (Tectonics of Latvia) (Brangulis, A. J. and Kaņevs, S., eds).  State Geological Survey, Riga.  

Karušs, J., Lamsters, K., Poršņovs, D., Zandersons, V. and Ješkins, J. 2021. Geophysical mapping of residual pollution at the remedi­ated Inčukalns acid tar lagoon, Latvia. Estonian Journal of Earth Sciences70(3), 140–151.
https://doi.org/10.3176/earth.2021.10

Kaufmann, G., Romanov, D. and Nielbock, R. 2011. Cave detection using multiple geophysical methods: Unicorn cave, Harz Mountains, Germany. Geophysics76(3), B71–B77.
https://doi.org/10.1190/1.3560245

Kuršs, V. and Stinkule, A. 1997. Latvijas derīgie izrakteņi (Mineral Deposits of Latvia). University of Latvia, Riga. 

Lamsters, K., 2012. Drumlins and related glaciogenic landforms of the Madliena Tilted Plain, Central Latvian Lowland. Bulletin of the Geological Society of Finland84(1), 45–57.
https://doi.org/10.17741/bgsf/84.1.004

Lamsters, K. and Zelčs, V. 2015. Subglacial bedforms of the Zemgale Ice Lobe, south-eastern Baltic. Quaternary International386, 42–54. 
https://doi.org/10.1016/j.quaint.2014.10.006

Lamsters, K., Kalińska-Nartiša, E., Zelčs, V. and Alexanderson, H. 2017. New luminescence ages reveal Early to Middle Weichselian deposits in central Latvia. Geological Quarterly61(2), 480–490.
https://doi.org/10.7306/gq.1349

Lamsters, K., Karušs, J., Stūrmane, A., Ješkins, J. and Džeriņš, P. 2022. Mapping of large-scale diapir structures at the paleo-ice tongue bed in western Latvia from geophysical investigations and borehole data. Quaternary International630, 3–16.
https://doi.org/10.1016/j.quaint.2020.12.003

LEGMC (Latvian Environment, Geology and Meteorology Centre). 2021. Meteorological data from station “Riga-University”
https://videscentrs.lvgmc.lv/ (accessed 2023-01-19).

Levins, I. and Buzajevs, V. 1999. Pazemes ūdeņu aizsargātības karte. Mērogs 1:500 000 (Groundwater vulnerability map of Latvia, scale 1:500 000). Report No. 12074. State Geological Survey, Riga.

Loke, M. H. 2004. Tutorial: 2-D and 3-D Electrical Imaging Surveys. Geotomo Software, Res2dinv 3.5 Software.

Loke, M. H. and Barker, R. D. 1996. Rapid least-squares inversion of apparent resistivity pseudosections by a quasi-Newton method. Geophysical Prospecting44, 131–152.
https://doi.org/10.1111/j.1365-2478.1996.tb00142.x

Martel, R., Castellazzi, P., Gloaguen, E., Trépanier, L. and Garfias, J. 2018. ERT, GPR, InSAR, and tracer tests to characterize karst aquifer systems under urban areas: The case of Quebec City. Geomorphology310, 45–56.
https://doi.org/10.1016/j.geomorph.2018.03.003

Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., Teixido, T., Ruano, P., Peña, J. A. et al. 2014. Integrated geophysical methods for studying the karst system of Gruta de las Maravillas (Aracena, Southwest Spain). Journal of Applied Geophysics107, 149–162.
https://doi.org/10.1016/j.jappgeo.2014.05.021

Martínez-Moreno, F. J., Galindo-Zaldívar, J., Pedrera, A., González-Castillo, L., Ruano, P., Calaforra, J. M. et al.  2015. Detecting gypsum caves with microgravity and ERT under soil water content variations (Sorbas, SE Spain). Engineering Geology193, 38–48.  
https://doi.org/10.1016/j.enggeo.2015.04.011

McGrath, R. J., Styles, P., Thomas, E. and Neale, S. 2002. Integrated high-resolution geophysical investigations as potential tools for water resource investigations in karst terrain. Environmental Geology42, 552–557.
https://doi.org/10.1007/s00254-001-0519-2

Palacky, G. V. 1987. Resistivity characteristics of geologic targets. In Electromagnetic Methods in Applied Geophysics – Theory (Nabighian, M., ed.). Society of Exploration Geophysicists, Tulsa, OK, 1, 53–129.
https://doi.org/10.1190/1.9781560802631.ch3

Pando, L., Pulgar, J. A. and Gutiérrez-Claverol, M. 2013. A case of man-induced ground subsidence and building settlement related to karstified gypsum (Oviedo, NW Spain). Environmental Earth Sciences68, 507–519. 
https://doi.org/10.1007/s12665-012-1755-3

Paukstys, B. and Narbutas, V. 1996. Gypsum karst of the Baltic Republics. International Journal of Speleology25(3), 279–284.
https://doi.org/10.5038/1827-806X.25.3.21

Prols, J., Driķis, V. and Levins, G. 1997. Vides aizsardzības pasākumu programma Rīgas ģipšakmens atradnes Salaspils iecirkņa izstrādei (Program of environmental protection measures for the development of the Salaspils precinct of Riga gypsum deposit). Latģeo report. State Geological Fund, Riga.

Rao, Y., Guo, Y. and Xu, D. 2021. Detecting karst voids based on dominant frequencies of seismic profiles. Pure and Applied Geophysics178(8), 3057–3067.
https://doi.org/10.1007/s00024-021-02792-1

Reynolds, J. M. 1997. An Introduction to Applied and Environmental Geophysics. Wiley, New York.

Satitpittakul, A., Vachiratienchai, C. and Siripunvaraporn, W. 2013. Factors influencing cavity detection in karst terrain on two-dimensional (2-D) direct current (DC) resistivity survey: A case study from the western part of Thailand. Engineering Geology152(1), 162–171.
https://doi.org/10.1016/j.enggeo.2012.10.015

Sevil, J., Gutiérrez. F., Zarroca, M., Desir, G., Carbonel, D., Guerrero, J. et al. 2017. Sinkhole investigation in an urban area by trenching in combination with GPR, ERT and high-precision leveling. Mantled evaporite karst of Zaragoza city, NE Spain. Engineering Geology231, 9–20.
https://doi.org/10.1016/j.enggeo.2017.10.009

Švēde, A. 2001. Ģeoekoloģisko izpētes darbu atskaite. Objekts: Salaspils ģipšakmens atradne, zemes dzīļu monitoringa sistēmas izveido­šana (Report of geo-ecological research works. Object: Salaspils gypsum deposit, development of ground monitoring system). Report No. 12781. Ltd “Ģeo Izpēte”. State Geological Survey, Riga.

Tolstovs, J., Tracevska, L., Sičovs, G. 1991. Отчет о результатах радиолокационных и инженерно-геологических работ в районе Саласпилсского месторождения гипса – II этап (Overview of the results of radiolocation and engineering geological works at Salaspils gypsum deposit area, stage II. Riga). No. 10824. State Geological Survey, Riga.

Tuckwell, G., Grossey, T., Owen, S. and Stearns, P. 2008. The use of microgravity to detect small distributed voids and low-density ground. Quarterly Journal of Engineering Geology and Hydrogeology41(3), 371–380.
https://doi.org/10.1144/1470-9236/07-224

Zhou, W., Beck, B. F. and Adams, A. L. 2002. Effective electrode array in mapping karst hazards in electrical resistivity tomog­raphy. Environmental Geology42, 922–928.
https://doi.org/10.1007/s00254-002-0594-z

Back to Issue