Cartographic visualization is a key means for the analysis of the Earth’s environmental processes. In view of the rapidly increasing multi-source data, cartographic approaches are updated accordingly. Mapping of countries characterized by complex geologic settings, such as Tanzania, requires implementation of advanced approaches. Cartographic solutions for the best visualization aim to provide elaborate content in an understandable and interoperable way in multi-disciplinary studies. This study presents such an approach by using Generic Mapping Tools (GMT), R and QGIS for cartographic mapping of Tanzania, with five maps addressing the natural setting (geology, topography, geophysics) and four maps showing the geomorphometric analysis. The 2D maps and the 3D mesh model were made by the traditional Geographic Information System (GIS) and scripting approaches. The features of the geomorphometric maps (slope, aspect, hillshade, elevation) were plotted by means of R. The technical methods are illustrated by the example of scripts. The paper contributes to the regional studies of Tanzania.
Alphayo, S. M. and Sharma, M. P. 2018. Water quality mapping of Ruvu River in Tanzania. American Journal of Applied Scientific Research, 4(4), 52–59.
Amante, C. and Eakins, B. W. 2009. ETOPO1 Global Relief Model converted to PanMap layer format. NOAA-National Geophysical Data Center, PANGAEA.
Armadillo, E., Rizzello, D., Pasqua, C., Pisani, P., Ghirotto, A., Kabaka, K. et al. 2020. Geophysical constraints on the Luhoi (Tanzania) geothermal conceptual model. Geothermics, 87, 101875.
https://doi.org/10.1016/j.geothermics.2020.101875
Berry, L. and Hellen, J. 1972. Tanzania in Maps. The Geographical Journal, 138(4), 525–525.
https://doi.org/10.2307/1795541
Boniface, N., Schenk, V. and Appel, P. 2014. Mesoproterozoic high-grade metamorphism in pelitic rocks of the northwestern Ubendian Belt: Implication for the extension of the Kibaran intra-continental basins to Tanzania. Precambrian Research, 249, 215–228.
https://doi.org/10.1016/j.precamres.2014.05.010
Bosworth, W. 1992. Mesozoic and early Tertiary rift tectonics in East Africa. Tectonophysics, 209(1–4), 115–137.
https://doi.org/10.1016/0040-1951(92)90014-W
Bosworth, W. 1994. A model for the three-dimensional evolution of continental rift basins, north-east Africa. Geologische Rundschau, 83, 671–688.
https://doi.org/10.1007/BF00251067
Bosworth, W. and Maurin, A. 1993. Structure, geochronology and tectonic significance of the northern Suguta Valley (Gregory Rift), Kenya. Journal of the Geological Society, 150(4), 751–762.
https://doi.org/10.1144/gsjgs.150.4.0751
Bosworth, W. and Strecker, M. R. 1997. Stress field changes in the Afro-Arabian rift system during the Miocene to Recent period. Tectonophysics, 278(1–4), 47–62.
https://doi.org/10.1016/S0040-1951(97)00094-2
Bosworth, W., Burke, K. and Strecker, M. 2000. Magma chamber elongation as an indicator of intraplate stress field orientation: “borehole breakout mechanism” and examples from the Late Pleistocene to Recent Kenya Rift Valley. In Journal of the Virtual Explorer. Vol 2. J. Stress, Structure and Strain: a volume in honour of Win D. Means (Jessell, M. and Urai, J., eds).
https://doi.org/10.3809/jvirtex.2000.00008
BRGM (Bureau de Recherches Géologiques et Minières), University of Dar-es-Salaam, Tanzania Geological Survey. 2004. A 2,000,000 scale geology and mineral map of Tanzania. In Proceedings of the 20th Colloquium of Africa Geology, Orleans, France, June 2–7, 2004 (Pinna, P., Muhongo, S., Mcharo, B. A., LeGoff, E., Deschamps, Y., Ralay, F. and Milesi, J. P., compliers). BRGM, Orleans.
Brewer, C. A. 2003. A transition in improving maps: the ColorBrewer example. Special issue of Cartography and Geographic Information Science, 30(2), 155–158.
https://doi.org/10.1559/152304003100011126
Brewer, C. A., Hatchard, G. W. and Harrower, M. A. 2003. ColorBrewer in print: a catalog of color schemes for maps. Cartography and Geographic Information Science, 30(1), 5–32.
https://doi.org/10.1559/152304003100010929
Chorowicz, J. 2005. The East African Rift System. Journal of African Earth Sciences, 43, 379–410.
https://doi.org/10.1016/j.jafrearsci.2005.07.019
Collins, A. S., Reddy, S. M., Buchan, C. and Mruma, A. 2004. Temporal constraints on Palaeoproterozoic eclogite formation and exhumation (Usagaran Orogen, Tanzania). Earth and Planetary Science Letters, 224(1–2), 175–192.
https://doi.org/10.1016/j.epsl.2004.04.027
Cooke, H. 1974. The coastal geomorphology of Tanga, Tanzania. Geographical Review, 64(4), 517–535.
https://doi.org/10.2307/213707
Delvaux, D. 2001. Karoo rifting in western Tanzania: precursor of Gondwana break-up? In Contributions to Geology and Paleontology of Gondwana. In honour of Prof. Dr. Helmut Wopfner. Cologne, 111–125.
Farr, T. G. and Kobrick, M. 2000. Shuttle Radar Topography Mission produces a wealth of data. Eos Transactions American Geophysical Union, 81(48), 583–583.
https://doi.org/10.1029/EO081i048p00583
Farr, T. G., Rosen P. A., Caro E., Crippen R., Duren R., Hensley S. et al. 2007. The Shuttle Radar Topography Mission. Reviews of Geophysics, 45(2), RG2004.
https://doi.org/10.1029/2005RG000183
Fritz, H., Tenczer, V., Hauzenberger, C. A., Wallbrecher, E., Hoinkes, G., Muhongo, S. and Mogessie, A. 2005. Central Tanzanian tectonic map (CTTM): A step forward to decipher Proterozoic structural events in the East African Orogen. Tectonics, 24(6), TC6013.
https://doi.org/10.1029/2005TC001796
Gauger, S., Kuhn, G., Gohl, K., Feigl, T., Lemenkova, P. and Hillenbrand, C. 2007. Swath-bathymetric mapping. Reports on Polar and Marine Research, 557, 38–45.
GEBCO Compilation Group. 2020. GEBCO 2020 Grid.
https://doi.org/10.5285/a29c5465-b138-234d-e053-6c86abc040b9 (accessed 2021-11-25).
Geological Survey of Tanzania.
https://www.gst.go.tz/strategic-aims-of-geological-mapping (accessed 2021-12-13).
Gombe, K. E., Asanuma, I. and Park, J.-G. 2017. Quantification of annual urban growth of Dar es Salaam Tanzania from Landsat time series data. Advances in Remote Sensing, 6(3), 175–191.
https://doi.org/10.4236/ars.2017.63013
Graniczny, M., Gogolek, W., Ploch, I. and Urban, H. 2011. Fascinating geology of Tanzania. Przeglad Geologiczny, 59(8), 561–565.
Guiraud, R. and Bosworth, W. 1999. Phanerozoic geodynamic evolution of northeastern Africa and the northwestern Arabian platform. Tectonophysics, 315(1–4), 73–104.
https://doi.org/10.1016/S0040-1951(99)00293-0
Haidutov, I. S. 1976. A greenstone belt–basement relationship in the Tanganyika shield. Geological Magazine, 113(1), 53–60.
https://doi.org/10.1017/S0016756800043016
Hamdun, A. and Arakaki, T. 2015. Analysis of ground level ozone and nitrogen oxides in the City of Dar es Salaam and the rural area of Bagamoyo, Tanzania. Open Journal of Air Pollution, 4(4), 224–238.
https://doi.org/10.4236/ojap.2015.44019
Harpum, J. R. 1970. Summary of the Geology of Tanzania. Series: Memoir (Tanzania. Mineral Resources Division), No. 1. Mineral Resources Division, Dodoma.
Harrower, M. and Brewer, C. A. 2003. ColorBrewer.org: An online tool for selecting colour schemes for maps. The Cartographic Journal, 40(1), 27–37.
https://doi.org/10.1179/000870403235002042
Hijmans, R. J. and van Etten, J. 2012. Raster: Geographic analysis and modeling with raster data. R package version 2.0-12.
http://CRAN.R-project.org/package=raster
Höhle, J. 2021. Automated mapping of buildings through classification of DSM-based ortho-images and cartographic enhancement. International Journal of Applied Earth Observations and Geoinformation, 95, 102237.
https://doi.org/10.1016/j.jag.2020.102237
Ijumulana, J., Mtalo, F. and Bhattacharya, P. 1997. Potential arsenic contamination in drinking water sources of Tanzania and its link with local geology. In Environmental Arsenic in a Changing World (Zhu, Y.-G., Guo, H., Bhattacharya, P. et al., eds). CRC Press, London, 62–63.
https://doi.org/10.1201/9781351046633-24
Ijumulana, J., Ligate, F., Bhattacharya, P., Mtalo, F. and Zhang. C. 2020. Spatial analysis and GIS mapping of regional hotspots and potential health risk of fluoride concentrations in groundwater of northern Tanzania. Science of the Total Environment, 735, 139584.
https://doi.org/10.1016/j.scitotenv.2020.139584
James, T. C. 1967. Thermal springs in Tanzania. Transactions of the Institution of Mining and Metallurgy, 76(729), 168–174.
John, R. 2020. Flooding in informal Settlements: potentials and limits for household adaptation in Dar es Salaam City, Tanzania. American Journal of Climate Change, 9(2), 68–86.
https://doi.org/10.4236/ajcc.2020.92006
Kabete, J. M., McNaughton, N. J., Groves, D. I. and Mruma, A. H. 2012a. Reconnaissance SHRIMP U–Pb zircon geochronology of the Tanzania Craton: evidence for Neoarchean granitoid–greenstone belts in the Central Tanzania Region and the Southern East African Orogen. Precambrian Research, 216–219, 232–266.
https://doi.org/10.1016/j.precamres.2012.06.020
Kabete, J. M., Groves, D. I., McNaughton, N. J. and Mruma, A. H. 2012b. A new tectonic and temporal framework for the Tanzanian Shield: Implications for gold metallogeny and undiscovered endowment. Ore Geology Reviews, 48, 88–124.
https://doi.org/10.1016/j.oregeorev.2012.02.009
Kagya, M., Ntomola, S. J. and Mpanju, F. 1991. The source rock of the Nyasa Rift Basin and oil shows of Tanzania. Journal of Southeast Asian Earth Sciences, 5(1–4), 407–419.
https://doi.org/10.1016/0743-9547(91)90055-3
Kajato, H. 1982. Gas strike spurs search for oil in Tanzania. Oil Gas Journal, 123, 123–131.
Kapilima, S. 2003. Tectonic and sedimentary evolution of the coastal basin of Tanzania during the Mesozoic times. Tanzania Journal of Science, 29(1), 1–16.
https://doi.org/10.4314/tjs.v29i1.18362
Kearey, P., Klepeis, K. A. and Vine, F. J. 2009. Global Tectonics. John Wiley & Sons, Hoboken, New Jersey, NJ.
Kempen, B., Dalsgaard, S., Kaaya, A. K., Chamuya, N., Ruipérez-González, M., Pekkarinen, A., Walsh, M.G. 2019. Mapping topsoil organic carbon concentrations and stocks for Tanzania. Geoderma, 337, 164–180.
https://doi.org/10.1016/j.geoderma.2018.09.011
Kent, P. E., Hunt, J. A. and Johnstone, D. W. 1971. Geology and Geophysics of Coastal Tanzania. Series: Geophysical Paper, No. 6. HMSO, London.
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. 2013a. Determination of ecological significance based on geostatistical assessment: a case study from the Slovak Natura 2000 protected area. Open Geosciences, 5(1), 28–42.
https://doi.org/10.2478/s13533-012-0120-0
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. 2013b. Interpretation of landscape values, typology and quality using methods of spatial metrics for ecological planning. In Proceedings of the 54th International Scientific Conference “Environmental and Climate Technologies”, Riga, Latvia, October 14–16, 2013.
Klaučo, M., Gregorová, B., Stankov, U., Marković, V. and Lemenkova, P. 2014. Landscape metrics as indicator for ecological significance: assessment of Sitno Natura 2000 sites, Slovakia. In Ecology and Environmental Protection. Proceedings of the International Conference, Minsk, Belarus, March 19–20, 2014. BSU Press, 85–90.
Klaučo, M., Gregorová, B., Koleda, P., Stankov, U., Marković, V. and Lemenkova, P. 2017. Land planning as a support for sustainable development based on tourism: A case study of Slovak Rural Region. Environmental Engineering and Management Journal, 16(2), 449–458.
https://doi.org/10.30638/eemj.2017.045
Koskikala, J., Kisanga, D. and Käyhkö, N. 2020. Biophysical regions of the Southern Highlands, Tanzania: regionalization in a data scarce environment with open geospatial data and statistical methods. Journal of Maps, 16(2), 376–387.
https://doi.org/10.1080/17445647.2020.1761061
Koskinen, J., Leinonen, U., Vollrath, A., Ortmann, A., Lindquist, E., d’Annunzio, R., Pekkarinen, A. and Käyhkö, N. 2019. Participatory mapping of forest plantations with Open Foris and Google Earth Engine. ISPRS Journal of Photogrammetry and Remote Sensing, 148, 63–74.
https://doi.org/10.1016/j.isprsjprs.2018.12.011
Lemenkova, P. 2011. Seagrass mapping and monitoring along the coasts of Crete, Greece. M.Sc. Thesis. University of Twente, the Netherlands.
Lemenkova, P. 2019a. Statistical analysis of the Mariana Trench geomorphology using R programming language. Geodesy and Cartography, 45(2), 57–84.
https://doi.org/10.3846/gac.2019.3785
Lemenkova, P. 2019b. GMT based comparative analysis and geomorphological mapping of the Kermadec and Tonga Trenches, Southwest Pacific Ocean.Geographia Technica, 14(2), 39–48.
https://doi.org/10.21163/GT_2019.142.04
Lemenkova, P. 2019c. Geomorphological modelling and mapping of the Peru-Chile Trench by GMT. Polish Cartographical Review, 51(4), 181–194.
https://doi.org/10.2478/pcr-2019-0015
Lemenkova, P. 2019d. AWK and GNU Octave programming languages integrated with generic mapping tools for geomorphological analysis. GeoScience Engineering, 65(4), 1–22.
https://doi.org/10.35180/gse-2019-0020
Lemenkova, P. 2020a. GEBCO Gridded Bathymetric Datasets for mapping Japan Trench geomorphology by means of GMT Scripting Toolset. Geodesy and Cartography, 46(3), 98–112.
https://doi.org/10.3846/gac.2020.11524
Lemenkova, P. 2020b. Hyperspectral vegetation indices calculated by Qgis using Landsat Tm image: a case study of Northern Iceland. Advanced Research in Life Sciences, 4(1), 70–78.
https://doi.org/10.2478/arls-2020-0021
Lemenkova, P. 2020c. Python libraries matplotlib, seaborn and pandas for visualization geospatial datasets generated by QGIS. Scientific Annals of “Alexandru Ioan Cuza” University of Iaşi, 64(1), 13–32.
Lemenkova, P. 2020d. Using R packages ‛tmap’, ‛raster’ and ‛ggmap’ for cartographic visualization: An example of dem-based terrain modelling of Italy, Apennine Peninsula. Zbornik radova – Geografski fakultet Univerziteta u Beogradu, 68, 99–116.
https://doi.org/10.5937/zrgfub2068099L
Lemenkova, P. 2020e. Applying automatic mapping processing by GMT to bathymetric and geophysical data: Cascadia Subduction Zone, Pacific Ocean. Journal of Environmental Geography, 13(3–4), 15–26.
https://doi.org/10.2478/jengeo-2020-0008
Lemenkova, P. 2021a. Topography of the Aleutian Trench south-east off Bowers Ridge, Bering Sea, in the context of the geological development of North Pacific Ocean. Baltica, 34(1), 27–46.
https://doi.org/10.5200/baltica.2021.1.3
Lemenkova, P. 2021b. Geodynamic setting of Scotia Sea and its effects on geomorphology of South Sandwich Trench, Southern Ocean. Polish Polar Research, 42(1), 1–23.
Lemenkova, P. 2021c. SAGA GIS for computing cultispectral vegetation indices by Landsat TM for mapping vegetation greenness. Contemporary Agriculture, 70(1–2), 67–75.
https://doi.org/10.2478/contagri-2021-0011
Lemenkova, P. 2021d. The visualization of geophysical and geomorphologic data from the area of Weddell Sea by the generic mapping tools. Studia Quaternaria, 38(1), 19–32.
Lemenkova, P. 2021e. Mapping topographic, geophysical and gravimetry data of Pakistan – a contribution to geological understanding of Sulaiman Fold Belt and Muslim Bagh Ophiolite Complex. Geophysica, 56(1–2), 3–26.
Lemenkova, P. 2021f. Dataset compilation by GRASS GIS for thematic mapping of Antarctica: Topographic surface, ice thickness, subglacial bed elevation and sediment thickness. Czech Polar Reports, 11(1), 67–85.
https://doi.org/10.5817/CPR2021-1-6
Lindh, P. and Lemenkova, P. 2021. Evaluation of different binder combinations of cement, slag and CKD for S/S treatment of TBT contaminated sediments. Acta Mechanica et Automatica, 15(4), 236–248.
https://doi.org/10.2478/ama-2021-0030
Maboko, M. A. H. and Basu, N. K. 1987. The geochemistry of mafic and ultramafic rocks in the Wami River granulite complex, central coastal Tanzania. Journal of African Earth Sciences, 6(6), 845–850.
https://doi.org/10.1016/0899-5362(87)90042-X
Masalu, D. C. P. 2008. An Overview of the bathymetry and geomorphology of the Tanzania EEZ. The Open Oceanography Journal, 2, 28–33.
https://doi.org/10.2174/1874252100802010028
Miller, B. W. and Doyle, M. W. 2014. Rangeland management and fluvial geomorphology in northern Tanzania. Geomorphology, 214, 366–377.
https://doi.org/10.1016/j.geomorph.2014.02.018
Mjili, A. S. and Mulibo, G. D. 2018. Petrophysical analysis of reservoirs rocks at Mchungwa well in Block 7 offshore, Tanzania: geological implication on the reservoir quality. Open Journal of Geology, 8, 764–780.
https://doi.org/10.4236/ojg.2018.88045
Msabi, M. M. and Makonyo, M. 2021. Flood susceptibility mapping using GIS and multi-criteria decision analysis: A case of Dodoma region, central Tanzania. Remote Sensing Applications: Society and Environment, 21, 100445.
https://doi.org/10.1016/j.rsase.2020.100445
Mseli, Z. H., Mwegoha, W. J. and Gaduputi, S. 2021. Identification of potential groundwater recharge zones at Makutupora basin, Dodoma Tanzania. Geology, Ecology, and Landscapes.
https://doi.org/10.1080/24749508.2021.1952763
Muthoni, F. K., Bekunda, M., Hoeschle-Zeledon, I., Sseguya, H., Kizito, F., Baijukya, F. and Mruma, S. 2020. A compendium of maps on biophysical and socioeconomic context, and suitability of maize varieties and inorganic fertilizers in Tanzania. IITA, Ibadan.
Mvile, B. N., Abu, M., Osinowo, O. O., Marobhe, I. M. and Olayinka, A. I. 2020. An overview of the geology of Tanga onshore basin: implication for hydrocarbon potential, Tanzania, East Africa. Journal of Sedimentary Environments, 5(3), 267–277.
https://doi.org/10.1007/s43217-020-00021-8
Mwanukuzi, P. K. 2008. Using GIS for decision making: the case of Kidunda dam in Morogoro, Tanzania. Geographical Journal, 174(2), 161–164.
https://doi.org/10.1111/j.1475-4959.2008.00288.x
Mwanukuzi, P. K. 2009. Impact of eucalyptus and pine growing on rural livelihood: the lesson from Bukoba area, north western Tanzania. African Journal of Ecology, 47, 105–109.
https://doi.org/10.1111/j.1365-2028.2008.01056.x
Mwanukuzi, P. K. 2011. Impact of non livelihood based land management on land resources: the case of upland watersheds in Uporoto Mountains, South West Tanzania. Geographical Journal, 177(1), 27–34.
https://doi.org/10.1111/j.1475-4959.2010.00362.x
NASA Shuttle Radar Topography Mission (SRTM). 2013. Shuttle Radar Topography Mission (SRTM) Global. Distributed by OpenTopography.
https://doi.org/10.5069/G9445JDF (accessed 2022-03-30).
Nijbroek, R. P. and Andelman, S. J. 2016. Regional suitability for agricultural intensification: a spatial analysis of the Southern Agricultural Growth Corridor of Tanzania. International Journal of Agricultural Sustainability, 14(2), 231–247.
https://doi.org/10.1080/14735903.2015.1071548
OpenStreetMap contributors. https://www.openstreetmap.org (accessed 2021-12-08).
Pavlis, N. K., Holmes, S., Kenyon, S. C. and Factor, J. K. 2012. The development and evaluation of the Earth Gravitational Model 2008 (EGM2008). Journal of Geophysical Research, 117, B04406.
https://doi.org/10.1029/2011JB008916
Persits, F. M., Ahlbrandt, T. S., Tuttle, M. L., Charpentier, R. R., Brownfield, M. E. and Takahashi, K. I. 1997. Maps showing geology, oil and gas fields and geological provinces of Africa. U.S. Geological Survey Open-File Report 97-470-A.
https://doi.org/10.3133/ofr97470A
Pinna, P., Cocherie, A., Thieblemont, D., Feybesse, J. and Lagny, P. 1996. Geodynamic evolution and metallogenic controls in the East-African Craton (Tanzania, Kenya, Uganda). Scientific and technical communications. Chronique de la Recherché Miniere, 525, 33–47
Pinna, P., Cocherie, A., Thieblemont, D. and Jezequel, P. 2000. The Kisii Group of western Kenya: an end-Archaean (2.53 Ga) late-orogenic volcano-sedimentary sequence. Journal of African Earth Sciences, 30(1), 79–97.
https://doi.org/10.1016/S0899-5362(00)00009-9
Pollastro, R. M., Karshbaum, A. S. and Viger, R. J. 1999. Maps showing geology, oil and gas fields and geologic provinces of the Arabian Peninsula. U.S. Geological Survey Open-File Report 97-470-B.
https://doi.org/10.3133/ofr97470B
QGIS.ORG Association. 2021. QGIS A Free and Open Source Geographic Information System.
http://www.qgis.org (accessed 2021-10-15).
Quennell, A. M. 1956. 1: 2,000,000 Geological Map of Tanzania.
Quennell, A. M., McKinley, A. C. M. and Aiken, W. G. 1956. Summary of the Geology of Tanganyika: Introduction and Stratigraphy. Part 1. Tanganyika Geological Survey Department Memoir 1.
R Core Team. 2021. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-projectorg
RStudio Team. 2017. RStudio: Integrated Development Environment for R. RStudio, Inc., Boston, MA. https://www.RStudio.com (accessed 2021-11-14).
Sandwell, D. T. and Smith, W. H. F. 1997. Marine gravity anomaly from Geosat and ERS 1 satellite altimetry. Journal of Geophysical Research, 102(B5), 10039–10054.
https://doi.org/10.1029/96JB03223
Sandwell, D. T., Müller, R. D., Smith, W. H. F., Garcia, E. and Francis, R. 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346(6205), 65–67.
https://doi.org/10.1126/science.1258213
Schenke, H. W. and Lemenkova, P. 2008. Zur Frage der Meeresboden-Kartographie: Die Nutzung von AutoTrace Digitizer für die Vektorisierung der Bathymetrischen Daten in der Petschora-See. Hydrographische Nachrichten, 81, 16–21.
Schweikart, J., Franke, C. and Henke, S. 2014. Atlas of health infrastructure for the Mbeya Region in Tanzania – Regional atlases as information source using geoinformation systems. Journal of Maps, 10(4), 620–629.
https://doi.org/10.1080/17445647.2014.908749
Scoon, R. 2018. Geology of National Parks of Central/Southern Kenya and Northern Tanzania. Springer, Cham.
https://doi.org/10.1007/978-3-319-73785-0
Suetova, I. A., Ushakova, L. A. and Lemenkova, P. 2005. Geoinformation mapping of the Barents and Pechora Seas. Geography and Natural Resources, 4, 138–142.
Temple, P. H. and Rapp, A. 1972. Landslides in the Mgeta Area, Western Uluguru Mountains, Tanzania. Geografiska Annaler: Series A, Physical Geography, 54(3–4), 157–193.
https://doi.org/10.1080/04353676.1972.11879864
Tennekes, M. 2018. tmap: Thematic maps in R. Journal of Statistical Software, 84(6), 1–39.
https://doi.org/10.18637/jss.v084.i06
Wessel, P, Luis, J. F., Uieda, L., Scharroo, R., Wobbe, F., Smith, W. H. F. and Tian, D. 2019. The Generic Mapping Tools version 6. Geochemistry, Geophysics, Geosystems, 20, 5556–5564.
https://doi.org/10.1029/2019GC008515