
INTRODUCTION 
 
An increasing volume of data is being generated by the 
geological surveys and remote sensing carried out in 
Tanzania (Temple and Rapp 1972; Kagya et al. 1991; 
Mjili and Mulibo 2018; Mvile et al. 2020). The need for 
rapid and effective processing of the collected data drives 
the search for effective tools for cartographic workflow 
with minimized handmade routine and maximized auto -
mated approach. The scripting approach in cartography 
enables to better explore geological and geomorphological 
data.  

The environmental setting of Tanzania (see Fig. 1 for 
topography) has been continuously studied since the 
1960s (James 1967; Kent et al. 1971; Kajato 1982; 
Maboko and Basu 1987; Ijumulana et al. 1997; Kabete 
et al. 2012a, 2012b; Boniface 2014; Hamdun and Arakaki 
2015; Gombe et al. 2017; John 2020). Such attention can 
be explained by its unique environment, specific geologic 
setting and rich mineral resources. Tanzania is notable for 
unique natural settings influenced by the East African Rift, 
an intra-continental active ridge system (Bosworth et al. 

2000; Chorowicz 2005; Kapilima 2003). Geologically, the 
East African Rift System is the result of the actions of 
numerous normal faults (Haidutov 1976; Kearey et al. 
2009; Graniczny et al. 2011). Other notable geographic 
features are Lake Victoria, Lake Nyasa and Lake 
Tanganyika that belong to the Great African Lakes formed 
as an outcome of the geologic evolution, including 
complex tectonic movements.  

The tectonic history of the Northeast African–Arabian 
plate reveals formation of the passive margins of the 
Paleotethys and the Neotethys (Guiraud and Bosworth 
1999). A system of Tanzanian–Kenyan rifts was created 
as a result of the tectonic crustal extension during the 
Mesozoic and early Tertiary, with the Central African Rift 
System being formed in the Late Jurassic (Bosworth 1992; 
Bosworth and Maurin 1993; Scoon 2018). Nowadays, the 
Central African Rift System stretches from central Sudan 
to southern Kenya and includes Tanzania.  

Tanzania is significant for a wide variety of land -
scapes: 1) raised beaches and marine-cut platforms; 
2) river terraces, valley bottoms; 3) coastal wetlands, 
beaches and lagoons formed by waves and tidal impact 
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Abstract. Cartographic visualization is a key means for the analysis of the Earth’s environmental processes. In view of the rapidly 
increasing multi-source data, cartographic approaches are updated accordingly. Mapping of countries characterized by complex 
geologic settings, such as Tanzania, requires implementation of advanced approaches. Cartographic solutions for the best visualization 
aim to provide elaborate content in an understandable and interoperable way in multi-disciplinary studies. This study presents such 
an approach by using Generic Mapping Tools (GMT), R and QGIS for cartographic mapping of Tanzania, with five maps addressing 
the natural setting (geology, topography, geophysics) and four maps showing the geomorphometric analysis. The 2D maps and the 
3D mesh model were made by the traditional Geographic Information System (GIS) and scripting approaches. The features of the 
geomorphometric maps (slope, aspect, hillshade, elevation) were plotted by means of R. The technical methods are illustrated by the 
example of scripts. The paper contributes to the regional studies of Tanzania. 
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in the eastern coasts of Tanzania; 4) mudflats, marshes, 
mangrove swamps, estuaries and deltas having tidal 
origin; 5) rift system depressions characterized by salt 
lakes, playas, swamps, wetlands and streams; 6) moun -
tain ous highlands; 7) lakes, swamps and floodplains 

(Cooke 1974). The variability of these landscapes was 
created in the course of the geologic evolution and shaped 
by external factors, such as aeolian processes, hydro -
logical networks, soil processes including erosion and 
vegetation coverage. 
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Fig. 1. Topographic map of Tanzania. Data: General Bathymetric Chart of the Oceans (GEBCO) overprinted on the monochrome 
shadow Digital Elevation Model (DEM) image. Data source: GEBCO Compilation Group 2020. Map source: elaborated by the 
author. 



Mapping such a diverse region, rich in geological 
resources and natural landscapes, requires advanced 
cartographic approaches and robust geospatial data. In 
response to these needs, this study brings together multi-
source datasets, advanced scripting and GIS methods. 
Investigating the links between the geologic and topo -
graphic settings can provide new information derived 
from the geospatial data. The objective of the work is to 
present an advanced cartographic approach of the in -
tegrated data analysis. The study aims to highlight the 
correlations between the geologic and geophysical 
settings of Tanzania and its relief as reflected in regional 
geomorphology. The practical goal is to fill in the gap 
between the modern cartographic solutions and the 
existing geological and geophysical datasets.  

Nowadays, in the epoch of automatization, the de -
velopment of scripting in cartography has become a 
topic of critical importance. Methods of applied pro -
gramming have attracted great interest due to their broad 
potential and an increasing need for automated mapping 
(Schenke and Lemenkova 2008; Koskinen et al. 2019; 
Lemenkova 2019a, 2021b; Höhle 2021). Another im -
portant question of modern cartography concerns 
availability of data and methods. Some commercial GIS 
applications have re stricted access and are not available 
to all users. While these software solutions provide base 
tools for mapping, it is always advisable to use open 
source GIS and data to enable repeatability of research. 
This study presents cartographic methods which can be 
benchmarked in similar studies. Moreover, using the 
proposed workflow, other high-resolution datasets can 
be employed for cross evaluations and expanding 
research goals. 

Background information on the cartographic data on 
Tanzania has revealed the lack of scripting approaches 
(Berry and Hellen 1972; Bosworth and Strecker 1997; 
Delvaux 2001; Collins et al. 2004; Fritz et al. 2005). 
Scripting is, nevertheless, a useful technique enabling to 
repeat workflow, shorten time and increase automation 
of data processing. While closely related in spatial data 
processing, GIS and scripting cartography are not the 
same. Scripting performs mapping by running the script 
which consists of command lines of codes written using 
programming syntax. Traditional GIS map ping is largely 
a Graphical User Interface (GUI)-based process. The 
workflow of this study involved making decisions on 
map design, organizing layers across the range of the 
supported formats, preparing the layout, with the pri -
mary goal of maintaining map aesthetics and read- 
ability. This study answers the following two questions: 
(1) how scripting and GIS can be used in integrated 
mapping; (2) what information can be derived from 
thematic data to get better insights into the regional 
setting of Tanzania. 

MATERIALS  AND  METHODS 
 
Data 
 
The presented geospatial data analysis consists in 
abstracting the diverse datasets available online. These 
data have been integrated into a project on Tanzania and 
targeted for representation. The topographic data (Fig. 1) 
were based on GEBCO (GEBCO Compilation Group 
2020); the geological dataset (Fig. 2) was retrieved from 
the United States Geological Survey (USGS) (Persits et 
al. 1997; Pollastro et al. 1999). Other existing geological 
datasets include traditional maps (Pinna et al. 1996, 2000; 
BRGM et al. 2004; Kabete et al. 2012B; Quennell, 1956; 
Quennell et al. 1956). Besides the geological data avail -
able on Tanzania, there is online mapping coverage on 
relevant resources (Geological Survey of Tansania 2021). 
The 3D model (Fig. 3) was based on the ETOPO1 
(Amante and Eakins 2009); the geoid map (Fig. 4) on the 
EGM-2008 (Pavlis et al. 2012); the geophysical data 
(Fig. 5) were derived from the gravity grids (Sandwell and 
Smith 1997; Sandwell et al. 2014), the DEM was obtained 
from the R ‘raster’ package (Hijmans and van Etten 2012), 
Figs 6–9.  

Using GEBCO for topographic mapping is reported in 
literature (Masalu 2008; Lindh and Lemenkova 2021; 
Gauger et al. 2007; Lemenkova 2019c, 2020e, 2021d, 
2021e). Its popularity can be explained by its availability 
(https://www.gebco.net/) and unprecedentedly high res -
olution. Land areas of GEBCO are based on the SRTM 
(Farr and Kobrick 2000; Farr et al. 2007; NASA Shuttle 
Radar Topography Mission (SRTM) 2013). 
 
Scripting  in  GMT 
 
Generic Mapping Tools (GMT) is an advanced scripting 
toolset (Wessel et al. 2019), which presents an automated 
suite of modules for cartographic data processing and 
design techniques using GMT syntax, as demonstrated 
earlier (Lemenkova 2020a, 2021a). GMT presents a 
promising scripting approach in cartography. Originally 
developed for geophysical needs, it has gained sig -
nificance for thematic mapping (Lemenkova 2019b; 
2019d). GMT applies shell scripts for cartographic visu -
alization, seeking to create artistic, print quality 2D and 
3D maps using modules for data processing. GMT dis -
criminates commands and flags in a script and plots a map 
by executing this script. The commands are written by 
means of modules. The maps demonstrated in Figs 1, 4 
and 5 were made applying the modules ‘grdimage’, 
‘pscoast’, ‘grdcontour’, ‘psbasemap’, ‘pstext’, ‘psxy’ and 
‘psclip’. The GMT scripts used for mapping in Figs 1, 3, 
4 and 5 are provided in the Appendix. For example, the 
following GMT modules were used for visualization of 
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the cartographic elements: the ‘grdimage’ module for 
plotting raster image, ‘pscoast’ for adding linear objects 
(coastal lines, country borders and rivers), ‘grdcontour’ 
for plotting isolines, ‘psbasemap’  for adding cartographic 
elements (legend, title, subtitle, background, grid, scale 
bar, north arrow, and graticule ticks), ‘pstext’  for plotting 
texts, ‘psclip’  for clipping the area (script 1 in Appendix), 
and ‘grdview’  for 3D. The legend was added by ‘psscale’ 
(scripts 1–4 in Appendix). Thus, each module was utilized 
for a specific purpose in a workflow. Colour palettes used 
in the makecpt module aimed to enhance data appearance. 
For example, Fig. 4 was plotted by the ‘wysiwig’ palette 
and Fig. 5 by ‘haxby’. Figure 1 shows a clipped area by 
the ‘geo’ palette overlain by the monochrome SRTM (Farr 
and Kobrick 2000; Farr et al. 2007). The 3D mapping is 
presented in Fig. 3 as a perspective overlay of the 3D 
mesh grid on ETOPO5 (5-m grid) over the 2D topo -
graphic contour based on ETOPO1 (script 2 in Appendix). 
Likewise, cartographic elements were plotted by various 
modules (see scripts 3 and 4 in Appendix). In such a way, 
the modules of GMT describe and control the appearance 

of the elements by adjusted flags within the executed 
module. A conceptual approach of scripting consists in 
selecting modules based on functionality. It increases the 
speed and precision of the machine’s performance and 
results in print-quality maps with layouts where the 
appearance of each cartographic element is regulated in a 
refined and detailed way.  
 
Mapping  in  QGIS 
 
QGIS presents a classic software that enables to visualize 
spatial information using a GUI. The map of geological 
units and provinces of Tanzania (Fig. 2) was plotted in 
QGIS (QGIS.ORG Association 2021) by employing the 
existing methods (Lemenkova 2020b, 2020c).  

Visualization in QGIS requires taking the following 
decisions in a workflow: (1) how and from where the data 
are collected (data capture); (2) the extent and resolution 
of the data (data quality); (3) how data layers are displayed 
(data organization); (4) how the layout is organized and 
where the cartographic elements are placed (legend, scale 
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Fig. 2. Geological units and provinces in Tanzania. Data source: United States Geological Survey (USGS) (Persits et al. 1997) and 
OpenStreetMap (OpenStreetMap contributors). Map source: elaborated by the author. 
 



bar, annotations, map, north arrow) (data visualization and 
representation); (5) which requirements are given for 
symbolizing the content. These steps were performed as 
a workflow in QGIS to achieve effective mapping 
(Fig. 2). As a result, an updated geological map was 
created which shows geological units and provinces of 
Tanzania using USGS data (Pollastro et al. 1999), with 
the cartographic elements illustrated by means of open 
geospatial data from QGIS.  

Programming  in  R 
 
The data processing was technically carried out using 
RStudio (RStudio Team 2017) of R language (R Core 
Team 2021). The R-based geomorphometric mapping 
presents a series of maps (Figs 6, 7, 8 and 9) describing 
the fundamental parameters of the relief: slope, aspect, 
hillshade and elevation heights. Here the maps were 
created on the basis of the Digital Elevation Model (DEM) 
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Fig. 3. 3D model of Tanzania. Data source: ETOPO1 5-minute resolution grid (Amante and Eakins 2009). Vertical exaggeration of 
z-axis scale is 3.5 (z-axis scaling as -JZ3.5c in the ‛grdview’ module of GMT). Horizontal resolution is 1:10,000,000. Map source: 
elaborated by the author. 
 



where slope, aspect, hillshade and elevation heights are, 
in turn, derivatives used for geomorphological analyses. 
Data capture was performed by ‘getData’ function of the 
‘raster’ package. Modelling of slope, aspect, hillshade and 
elevation was performed by the ‘raster’ package.  

The cartographic adjustments of the maps were made 
by the ‘tmap’ package of R, which improved the visual 
appearance of the maps (Figs 6–9) by changing style, 
positioning, colour and fonts of the cartographic el ements 
modified according to map layouts. The colour palettes 

were selected from the ‘RColorBrewer’ package using 
RGB (Red, Green, Blue) and CMYK (Cyan, Magenta, 
Yellow, Black) palettes for the maps in Figs 6–9 (Brewer 
et al. 2003; Brewer 2003; Harrower and Brewer 2003). 
The ‘tmap’ package of R (Tennekes 2018) designed for 
generating maps employs the scripting approach based 
on the R syntax (Lemenkova 2020d) rather than the 
traditional GIS (e.g. Suetova et al. 2005; Lemenkova 
2011, 2021c, 2021f; Klaučo et al. 2014, 2017). The R 
script used for plotting Figs 6–9 is provided in the 
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Fig. 4. Geoid gravitational model of Tanzania. Data: EGM-2008. Map source: elaborated by the author. 
 



Appendix for more technical details. The lines of the script 
control the annotation styles, fonts, angle of graticule, 
layout style and other cartographic adjustments (Figs 6–9). 

 
 

RESULTS 
 
The advanced cartographic approaches have generated 
nine new maps aimed to visualize Tanzania in multiple 

thematic content: geophysics, geodesy, geology, top -
ography and geomorphology. According to the data 
inspection by GDAL (Geospatial Data Abstraction 
Library), the topography reaches up to 5677 m with the 
mean of 617 m, which also includes the coastal area of the 
Indian Ocean with the minimal values at –3510 m (Fig. 1). 
The inspection was carried out using the command 
“gdalinfo -stats tz_relief.nc”, which checked the values of 
the cells in the file. In GDAL the “gdalinfo” runs the 
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Fig. 5. Free-air gravity anomaly of Tanzania. Data source: CryoSat-2 and Jason-1. Map source: elaborated by the author. 
 



command in a console, the “-stats” flag means the 
statistics command and the “tz_relief.nc” is the name of 
the file in NetCDF format. The oceanic area includes the 
coastal region of Tanzania (Fig. 1).    

Figure 2 shows the geologic content prepared by 
means of QGIS. The Precambrian to Cambrian (pCm) 
geological unit is located within the East African Rift. The 
other widely distributed types include Quaternary (Q) 
deposits and Quaternary volcanics (Qv) in the north. The 
Tertiary (T) outcrops are found occasionally, lying mostly 

along the coastal area as well as in southern and western 
regions. The Jurassic to Cretaceous (JC) units are mainly 
located in the south (Fig. 2). Compared to the existing 
3D mapping of Eastern Africa (Bosworth 1994) which 
visualizes graben geometry as graphics, the 3D map 
shows an elevation perspective view made by the ‘grdview’ 
module featuring major objects: Lake Victoria, the Masai 
Steppe, the Serengeti Plain (Fig. 3). 

The 3D map (Fig. 3) was created by scripting which 
provides a time-efficient workflow for accurate data 

Estonian Journal of Earth Sciences, 2022, 71, 2, 61–79

68

 
 
Fig. 6. Visualization of the Digital Elevation Model (DEM) of the terrain of Tanzania. Mapping by R using packages ‘tmap’, 
‘raster’, ‘sp’, ‘sf’. Map source: elaborated by the author. 
 



visualization using a high degree of automation. This is 
achieved by the automated map plotting algorithms em -
ploy ing stepwise modular scripting techniques aimed to 
present updated information on the topography of Tanzania. 

Figures 4 and 5 show the geoid and free-air gravity 
anomaly in Tanzania. The maximum range of geoid 
undulations (Fig. 4) reaches 48 mGal (Burundi, Rwanda 
and NE Zambia), while the minimum is –45 mGal, 
pointing to variations in the rock density causing trans -
formation in the geoid values. The analysis of Fig. 5 
indicates variations in the free-air gravity anomalies with 

the dominant values of 45/+25 mGal (Fig. 5). Accurate 
detection of geoid and gravity values enables to compare 
variations in the regional geophysical setting through 
precise visualization by GMT. In this way, mapping based 
on the geoid Earth Gravitational Model 2008 (EGM-2008) 
creates a platform for further geophysical analysis. 
Scripting algorithms of raster data processing enable to 
plot maps accurately due to the automated workflow. This 
makes it possible to detect correlations among the geo -
physical and geologic variables by the comparison of 
maps. The geological and geophysical maps, compared to 
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Fig. 7. Aspect terrain visualization based on DEM of Tanzania. Mapping by R using packages ‘tmap’, ‘raster’, ‘sp’, ‘sf’. Map source: 
elaborated by the author. 
 



the geomorphology, help to reveal impact factors con -
tributing to the relief formation reflected in the local and 
regional landforms, depression and mountains. 

The series of maps in Figs 6–9 reveal variations in the 
geomorphometric parameters. Aspect orientation by compass 
is modelled in Fig. 7 based on the DEM shown in Fig. 6. 
The hillshade is visualized in Fig. 8 and slope steepness 
in Fig. 9, showing the variability of the relief in Tanzania 
based on the DEM (Fig. 6). The comparison of these maps 
refers to the connection with the geomorphology formed 

as a result of geologic evolution. This enables to gain new 
insights into the Earth observation data. The response of 
the local topography of Tanzania to external effects, such 
as river network, soil erosion and vegetation coverage, 
may become an extension of this research using additional 
large-scale datasets.  

A series of geomorphometric analytical maps was 
plotted to show the variability of the relief in the country. 
The variety of the landforms of Tanzania can be studied 
in detail resorting to morphometric characteristics (slope 
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Fig. 8. Hillshade terrain visualization based on DEM of Tanzania.  Mapping by R using packages ‘tmap’, ‘raster’, ‘sp’, ‘sf’. Map 
source: elaborated by the author. 
 



in Fig. 9, aspect in Fig. 7, elevations based on the DEM 
in Fig. 6, hillshade in Fig. 8). The geomorphology can be 
explored and better analysed using geological and 
geophysical maps employed as benchmarks because the 
depressions and elevations (mountain regions) correspond 
to the major geologic and tectonic features: the Great Rift 
Valley, the Great Lakes. In turn, landscape forms such as 
the Masai Steppe or the Serengeti Plain follow general 
geomorphic structures of the Earth with corresponding 
types of soil and vegetation. 

DISCUSSION 
 
Automatization is a continuous challenge in modern 
cartography (Msabi and Makonyo 2021; Klaučo et al. 
2013a, 2013b; Muthoni et al. 2020). The importance of 
the effective mapping for environmental and geologic 
science is shown in relevant literature (Alphayo and 
Sharma 2018; Kempen et al. 2019; Ijumulana et al. 2020; 
Armadillo et al. 2020). Automated cartographic methods 
are demonstrated in this paper by scripting languages 
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Fig. 9. Slope terrain visualization based on DEM of Tanzania. Mapping by R using packages ‘tmap’, ‘raster’, ‘sp’, ‘sf’. Map source: 
elaborated by the author. 
 
 



GMT and R used for console-based mapping of Tanzania. 
The contribution of this study to the Earth science consists 
in increasing geo-information by presenting nine new 
maps of Tanzania.  

With diverse performance of the cartographic tools 
and graphical analysis of data visualization, the results 
reveal that there is a correspondence between the geologic 
setting, geophysical anomalies and relief of Tanzania. The 
results show that both the shell script and GIS can be 
effectively used in cartography for comparative analysis 
of a regional setting retrieving data from geological, 
geophysical, geodetic, geomorphologic and topographic 
sources. A novel cartographic technique integrating GMT, 
QGIS and R is particularly useful in the analysis of maps 
that can be interpreted independently or comparatively. 
Unlike the traditional GIS, scripting functions are similar 
to programming with the possibility of reusing. Therefore, 
scripts can be repeated in similar studies in order to 
increase the speed and accuracy of mapping.  

Comparable approaches for mapping Tanzania include 
examples of the traditional mapping. In fact, the majority 
of the existing maps of Tanzania use ArcGIS or QGIS (e.g. 
Schweikart et al. 2014; Nijbroek and Andelman 2016; 
Koskikala et al. 2020; Mseli et al. 2021). This is mostly 
explained by the relative simplicity of the traditional GIS. 
However, compared to GMT, limited functionality of GIS 
does not enable plotting maps in a fast and automated way, 
not to mention the print-quality graphics and design. This 
work continued the studies on Tanzania in the carto -
graphic domain by incorporating the latest geophysical 
and geological datasets and advanced scripting. Thus, it 
is an advantage in further cartographic development 
enabling to link the geomorphological and geophysical 
data to better analyse the regional setting of Tanzania. The 
weak point of this approach might be that GMT is 
relatively difficult to master compared to the traditional 
GIS methods.   

The presented maps may serve for the benefit of 
geospatial and geologic monitoring in Tanzania on local, 
regional and national scales. An integrated mapping can 
be applied for environmental monitoring of the national 
parks or as modelling in geologic prospecting. Further 
applications can include natural resource management, 
mineral resource exploration, data visualization and 
interpretation. A multi-scale approach comprises small-
scale geophysical data, high-resolution topographic data 
and a medium-scale DEM by R. The cartographic focus 
on resolution reflects the need for the integration of multi-
source data that may be of various origins and vary in 
precision. The geomorphological mapping aims to gain 
better insights into the landscapes reflected in the 
topography of Tanzania and into the corresponding major 
tectonic features, i.e. the East African Rift and the Great 
Lakes.  

CONCLUSIONS 
 
This study has referred to two approaches of mapping: 
scripting and traditional methods.  Its aim was to improve 
the existing cartographic methods towards more 
automated, accurate and fast workflows, achieved through 
scripting. In addition, a review on the geology and the 
environmental setting of Tanzania was carried out to 
analyse the geologic structure influencing the geo -
morphology of the country, formed by complex tectonic 
processes (Harpum 1970; Mwanukuzi 2008, 2009, 2011; 
Miller and Doyle 2014). Geologic information was 
considered to link the geologic and geomorphological 
processes expressed in relief.  

The thematic overlay of several maps (geophysics, 
geomorphology, topography and geology) aimed to 
support correlations between the geologic, topographic 
and geophysical phenomena in the country, i.e. the East 
African Rift System, Lake Victoria, Lake Tanganyika and 
Lake Nyasa, the Serengeti Plain and the Masai Steppe. 
For example, a correspondence exists between the extent 
of the rifts, topographic heights and directions of the 
geological units. Anomalies in geophysical fields reflect 
gravity fluctuations which well correspond with the 
topographic depressions. Slope steepness, aspect and actual 
relief representation were compared with the 2D and 3D 
models. The presented methods of mapping have facilitated 
map interpretation and analysis: for the vector maps in 
QGIS, raster maps in GMT and numerical modelling in R. 

The actuality of this study can be summarized in four 
ways: (1) new maps based on the high-resolution data 
contribute to an increase in information on Tanzania; (2) 
scripting approaches can serve as a guide for similar 
workflows; (3) maps made using open data sources can 
be reused in similar studies on Tanzania; (4) the possibility 
of combining various thematic layers can support the 
future research and thus the understanding regarding the 
geologic formation and geomorphology in the context of 
tectonic processes. It is recommended that a comparative 
analysis of various data (projections, data extent, vector 
and raster formats) be applied for further extended 
research. This paper has presented a combination of 
scripting and traditional methods for mapping Tanzania 
with the results referred to as a practical framework for 
organizing similar thematic projects.  
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Appendix 
 

1. GMT  script  used  for  plotting  Fig. 1:  Topographic  map  of  Tanzania. 
 
ps=Topo_TZ.ps 
gmt grdimage tz_relief.nc -Cocean.cpt -R29/42/-13/1 -JM6.5i -I+a15+ne0.75 -Xc -P -K > $ps 
gmt pscoast -R -J -ETZ -Gc -O -K >> $ps 
echo “-10000 150 10000 150” > gray.cpt 
gmt grdgradient tz_relief.nc -Nt1 -A45 -Gtanzania_topo_i.nc 
gmt grdimage tz_relief.nc -Itanzania_topo_i.nc -J -Cgray.cpt -O -K >> $ps 
gmt grdcontour tz_relief.nc -R -J -C500 -Wthinnest,dimgray -O -K >> $ps 
gmt pscoast -R -J -O -K -Q >> $ps 
gmt grdcontour tz_relief.nc -R -J -C500 -Wthinner,darkbrown -O -K >> $ps 
gmt pscoast -R -J -P -Ia/thinner,blue -Na -N1/thickest,white -W0.1p -Df -O -K >> $ps 
gmt psclip -JM -R tanzania.txt -O -K >> $ps 
gmt grdimage tz_relief.nc -Cocean.cpt -R29/42/-13/1 -JM6.5i -I+a15+ne0.75 -Xc -P -O -K >> $ps 
gmt grdcontour tz_relief.nc -R -J -C500 -Wthinnest,navajowhite1 -O -K >> $ps 
gmt pscoast -R -J -P -Ia/thinner,blue -Na -N1/thickest,khaki1 -W0.1p -Df -O -K >> $ps 
gmt psclip -C -O -K >> $ps 
gmt psscale -Dg27.5/-13.0+w17.7c/0.15i+v+o0.3/0i+ml -R -J -Cocean.cpt \ 
    -Bg500f50a500+l”Color scale: ‘geo’ [R=-5358/3447, H=0, C=HSV]” -I0.2 -By+lm -O -K >> $ps 
gmt psbasemap -R -J -Bpxg4f1a2 -Bpyg2f1a2 -Bsxg2 -Bsyg1 \ 
            -B+t”Topographic map of Tanzania” -O -K >> $ps 
gmt psbasemap -R -J \ 
    -Lx14.5c/-1.3c+c50+w200k+l”Mercator projection. Scale (km)”+f -UBL/-15p/-38p -O -K >> $ps 
gmt pstext -R -J -N -O -K -F+f10p,13,black+jLB -Gwhite@50 >> $ps << EOF 
39.5 -6.1 Zanzibar City EOF 
gmt psbasemap -R -J -O -K -DjTR+w3.2c+o-0.2c/-0.2c+stmp >> $ps 
read x0 y0 w h < tmp 
gmt pscoast -Rg -JG35.0/-6.0N/$w -Da -Glightgoldenrod1 -A5000 \ 
            -Bga -Wfaint -ETZ+gred -Sdodgerblue -O -K -X$x0 -Y$y0 >> $ps 
gmt psxy -R -J -O -K -T  -X-${x0} -Y-${y0}  
>> $ps 
gmt logo -Dx7.0/-2.0+o0.1i/0.1i+w2c -O -K >> $ps 
gmt pstext -R0/10/0/15 -JX10/10 -X0.1c -Y12.5c -N -O -F+f10p,13,black+jLB >> $ps << EOF 
3.0 9.0 Digital elevation data: SRTM/GEBCO, 15 arc sec resolution grid EOF 
gmt psconvert Topo_TZ.ps -A1.5c -E720 -Tj -Z 
 
2. GMT  script  used  for  plotting  Fig. 3:  3D  model  of  Tanzania. 
 
gmt grdcut earth_relief_05m.grd -R29/42/-13/5 -Gtz_relief5.nc 
gdalinfo -stats tz_relief5.nc 
gmt makecpt -Cturbo.cpt -V -T-3527/4621 > myocean.cpt 
ps=TZ_3D.ps 
gmt grdcontour ETOPO1_Ice_g_gmt4.grd -JM10c -R29/42/-13/5 -p165/30 -C250 -Gd3c -Y3c \ 
            -U/-0.5c/-1c/”Data: World ETOPO 1/5 arc minute resolution grid” -P -K > $ps 
gmt pscoast -R -J -p165/30 -P -Ia/thinner,blue \ 
            -Bpxg2f0.5a1 -Bpyg2f0.5a1 -Bsxg2 -Bsyg1 -Na -N1/thickest,tomato -W0.1p -Df -O -K >> $ps 
gmt psscale -Dg26.0/-10+w8.0c/0.4c+v+o0.0/0.5c+ml -R -J -Cmyocean.cpt -Bg500f50a500+l”Color scale legend: depth 
and height elevations (m).” -I0.2 -By+lm -O -K >> $ps  
gmt grdview tz_relief5.nc -J -R -JZ3.5c -Cmyocean.cpt -p165/30 -Qsm -N-3500+glightgray -Wm0.07p -Wf0.1p,red -
B4/4/2000:”Bathymetry and topography (m)”:ESwZ -S5 -Y5.0c -O -K >> $ps 
gmt pstext -R -J -N -O -K \ 
-F+jTL+f9p,25,white+jLB+a-300 >> $ps << EOF 
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41.8 -10.0 Indian Ocean EOF 
gmt pstext -R -J -N -O -K \ 
-F+jTL+f9p,26,black+jLB+a-350 >> $ps << EOF 
42.5 -4.0 Masai 
42.5 -4.8 Steppe EOF 
gmt logo -Dx10.5/-5.5+o0.0c/-0.5c+w2c -O -K >> $ps 
gmt pstext -R0/10/0/10 -Jx1 -X-0.8c -Y0.0c -N -O -K \ 
-F+f12p,25,black+jLB >> $ps << EOF 
-0.5 10.0 Tanzania: 3D Topographic Mesh Model  
EOF 
gmt pstext -R0/10/0/10 -Jx1 -X0.0c -Y0.0c -N -O\ 
    -F+f8p,0,black+jLB >> $ps << EOF 
-0.5 9.5 Perspective view 
-0.5 9.0 Azimuth rotation: 165/30\232 
-0.5 8.5 Base map: 2D relief contour plot 
-0.5 8.0 Region: Tanzania  
EOF 
gmt psconvert TZ_3D.ps -A1.2c -E720 -Tj -P -Z 
 
3. GMT  script  used  for  plotting  Fig. 4:  Geoid  gravitational  model  of  Tanzania. 
 
gmt grdconvert s45e00/w001001.adf geoid_TZ.grd 
gdalinfo geoid_TZ.grd -stats 
gmt makecpt -Cwysiwyg -T-44/48/1 > colors.cpt 
ps=Geoid_TZ.ps 
gmt grdimage geoid_TZ.grd -Cwysiwyg -R29/42/-13/0 -JM6.5i -P -Xc -I+a15+ne0.75 -K > $ps 
gmt grdcontour geoid_TZ.grd -R -J -C0.25 -A1+f9p,25,black -Wthinner,dimgray -O -K >> $ps 
gmt psbasemap -R -J -Bpxg4f1a2 -Bpyg2f1a2 -Bsxg2 -Bsyg1 \ 
    -B+t”Geoid gravitational model of Tanzania” -O -K >> $ps 
gmt psscale -Dg27.5/-13.0+w16.5c/0.15i+v+o0.3/0i+ml+e -R -J -Ccolors.cpt \ 
    -Bg5f1a10+l”Color scale wysiwyg: 20 well-separated RGB colors [C=RGB, -T0/40/1]” \ 
    -I0.2 -By+lm -O -K >> $ps 
gmt psbasemap -R -J \ 
    -Lx14.5c/-1.3c+c50+w200k+l”Mercator projection. Scale (km)”+f -UBL/-10p/-38p -O -K >> $ps 
gmt pscoast -R -J -P -Ia/thinnest,blue -Na -N1/thickest,white -Wthinner -Df -O -K >> $ps 
gmt pstext -R -J -N -O -K \ 
-F+f9p,13,black+jLB -Gwhite@50 >> $ps << EOF 
39.5 -6.1 Zanzibar City EOF 
gmt logo -Dx7.0/-2.0+o0.1i/0.1i+w2c -O -K >> $ps 
gmt pstext -R0/10/0/15 -JX10/10 -X0.1c -Y11.3c -N -O -F+f10p,13,black+jLB >> $ps << EOF 
3.0 9.0 World geoid image EGM2008 vertical datum 2.5 min resolution EOF 
gmt psconvert Geoid_TZ.ps -A0.5c -E720 -Tj -Z 
 
4. GMT script used for plotting Fig. 5:  Free-air gravity anomaly of Tanzania. 
 
gmt img2grd grav_27.1.img -R29/42/-13/0 -Ggrav.grd -T1 -I1 -E -S0.1 -V 
gmt grdcut grav.grd -R29/42/-13/0 -Gtz_grav.nc 
gdalinfo -stats tz_grav.nc 
gmt makecpt -Chaxby -T-200/200/1 > colors.cpt 
ps=Grav_TZ.ps 
gmt grdimage tz_grav.nc -Ccolors.cpt -R29/42/-13/0 -JM6.5i -I+a15+ne0.75 -Xc -K > $ps 
gmt psscale -Dg27.5/-13.0+w16.5c/0.15i+v+o0.3/0i+ml+e -R -J -Ccolors.cpt \ 
            -Bg25f5a50+l”Color scale ‘jet’ (Dark to light blue, white, yellow and red [C=RGB] -183/278/1)” -I0.2 -
By+lmGal -O -K >> $ps  
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gmt grdcontour tz_grav.nc -R -J -C25 -A50 -Wthinnest -O -K >> $ps 
gmt pscoast -R -J -P -Ia/thinner,blue -Na -N1/thickest,red -W0.1p -Df -O -K >> $ps 
gmt psbasemap -R -J -Bpxg1f0.5a1 -Bpyg1f0.5a1 -Bsxg2 -Bsyg1 -B+t”Free-air gravity anomaly for Tanzania” -O -K 
>> $ps 
gmt psbasemap -R -J \ 
            -Lx14.5c/-1.5c+c50+w200k+l”Mercator projection. Scale (km)”+f -UBL/0p/-40p -O -K >> $ps 
gmt psbasemap -R -J -Tdx1.0c/0.4c+w0.3i+f2+l+o0.15i -O -K >> $ps 
gmt pstext -R -J -N -O -K \ 
-F+f9p,13,black+jLB -Gwhite@50 >> $ps << EOF 
39.5 -6.1 Zanzibar City 
EOF 
gmt pstext -R0/10/0/15 -JX10/10 -X0.1c -Y11.3c -N -O \ 
    -F+f10p,13,black+jLB >> $ps << EOF 
3.0 9.3 Global satellite derived gravity grid (CryoSat-2 and Jason-1). 
EOF 
gmt psconvert Grav_TZ.ps -A0.5c -E720 -Tj -Z 
 
5. GMT  script  used  for  plotting  Figs 6–9:  Geomorphometric  mapping  by  R. 
 
library(sp) 
library(raster) 
library(ncdf4) 
library(RColorBrewer) 
library(sf) 
library(tmap) 
alt = getData(“alt”, country = “Tanzania”, path = tempdir()) 
slope = terrain(alt, opt = “slope”) 
plot(slope) 
aspect = terrain(alt, opt = “aspect”) 
plot(aspect) 
hill = hillShade(slope, aspect, angle = 40, direction = 270) 
plot(hill) 
plot(alt) 
tmap_mode(“plot”) # here example for the slope map. 
map1 <- 
    tmap_style(“gray”) + 
    tm_shape(slope, name = “Slope”, title = “Slope”) + 
    tm_raster(title = “Slope (0\u00B0-90\u00B0)”, palette=”plasma”, style=”quantile”, n = 6, 
        breaks = c(5, 15, 30, 60, 75, 90), 
        legend.show = T,legend.hist = T,legend.hist.z=0) + 
    tm_scale_bar(width = 0.25,text.size = 0.8, text.color = “black”, 
        color.dark = “black”, color.light = “white”, 
        position=c(“left”, “bottom”), lwd = 1) + 
    tm_compass(type = “radar”, position=c(“right”, “top”), size = 10.0) + 
    tm_layout(scale = .8, 
        main.title = “Slope terrain analysis based on DEM of Tanzania. Mapping: R”, main.title.position = “center”, 
        main.title.color = “black”, main.title.size = 1.0, 
        title = “Slope (0\u00B0-90\u00B0)”, 
        title.color = “black”, title.size = 1.0, 
        title.position = c(“left”, “top”), panel.labels=c(“R packages: tmap, raster, sp, sf”), 
        panel.label.color = “darkslateblue”, 
        panel.label.size = 1.0, legend.position = c(“left”,”bottom”),legend.bg.color = “grey90”, 
        legend.bg.alpha = .2, legend.outside = FALSE, legend.width = .3, legend.height = .5, 
        legend.hist.height = .2, legend.title.size = 0.9, 
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Ruumiandmestiku  visualiseerimine  Tansaania  kraatoni  Serengeti  tasandiku   
ja  Ida-Aafrika  riftioru  näitel 

 
Polina Lemenkova 

 
Planeedi keskkonnaprotsesside analüüsimisel on oluline roll ruumiandmetel ja nende visualiseerimisel. Erinevatest 
allikatest pärit andmete maht suureneb tänapäeval kiiresti ning koos sellega peavad arenema ka kartograafilised 
meetodid. Keerulise geoloogilise ehitusega piirkondade kaardistamine nõuab kompleksset käsitlust. Käesolevas töös 
on analüüsitud ja visualiseeritud Tansaania ruumiandmeid, kasutades vahendeid nagu Generic Mapping Tools (GMT), 
R ja QGIS. Viis loodud kaarti iseloomustavad looduslikke tingimusi (geoloogia, geofüüsika, topograafia) ning neli 
visualiseerivad geomorfomeetrilist analüüsi. Kahemõõtmelised kaardid ja kolmemõõtmeline pinnamudel loodi kasutades 
konventsionaalset GIS tarkvara koos skriptimisega. Geomorfomeetrilised kaardid (kõrgusmudel, nõlvad, varjutus) loodi 
statistikatarkvara R skriptide abil. 


