ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Modelling and experimental measurement of the closed equilibrium system of H2O–SrS; pp. 287–297
PDF | 10.3176/proc.2020.4.02

Authors
Kalev Uiga, Ergo Rikmann, Ivar Zekker, Alexey Mashirin, Toomas Tenno
Abstract

This study investigates the H2O–SrS (strontium sulphide) equilibrium system at [SrS] between 0.125 and 88.064 mM (mmol·L−1) in a closed oxygen-free test system at 25 ºC (the measured system’s pH being in the range of 10.0–13.1). The distribution of ions and molecules in this system is described in a structural scheme. A proton transfer model was developed to calculate the pH, concentrations of formed ions and molecules in the system by using an iteration method. In the formation of the basic equilibrium system of H2O–SrS, the dissociation of SrS in aqueous media causes the release of the S2− ions that will accept a certain quantity of protons (∆[H+]S2–), originating from the reversible dissociation of water (∆[H+]H2O). In the final closed system of H2O–SrS, after adding larger amounts (≥10 g·L−1) of salt into MilliQ water, strontium hydroxide was formed as a precipitate. Proton transfer parameters, pH, and equilibrium concentrations of ions and molecules in the liquid phase were calculated and experimentally validated.

References

1. Reinik, J., Irha, N., Steinnes, E., Urb, G., Jefimova, J., and Piirisalu, E. Release of 22 elements from bottom and fly ash samples of oil shale fueled PF and CFB boilers by a two-cycle standard leaching test. Fuel Process. Technol., 2014, 124, 147–154.
https://doi.org/10.1016/j.fuproc.2014.03.011

2. Lille, Ü. Current knowledge on the origin and structure of Estonian kukersite kerogen. Oil Shale, 2003, 20(3), 253−263.

3. Zekker, I., Tenno, T., Selberg, A., and Uiga, K. Dissolution modeling and experimental measurement of CaS-H2O binary system. Chin. J. Chem., 2011, 29(11), 2327–2336. 
https://doi.org/10.1002/cjoc.201180399

4. Mõtlep, R., Kirsimäe, K., Talviste, P., Puura, E., and Jürgenson, J. Mineralogical composition of Estonian oil shale semi-coke sediments. Oil Shale, 2007, 24(3), 405–422.

5. Mölder, L., Elenurm, A., and Tamvelius, H. Sulphur compounds in a hydraulic ash disposal system. Proc. Est. Acad. Sci. Chem., 1995, 44(2–3), 207–211.

6. Harzia, H., Orupõld. K., Habicht. J., and Tenno, T. Leaching behaviour of oil shale semicoke: sulphur species. Oil Shale, 2007, 24(4), 583–589.

7. Tamm, K., Kallaste, P., Uibu, M., Kallas, J., Velts-Jänes, O., and Kuusik, R. Leaching thermodynamics and kinetics of oil shale waste key components. Oil Shale, 2016, 33(1), 80–99. 
https://doi.org/10.3176/oil.2016.1.07

8. Liiv, J., Teppand, T., Rikmann, E., and Tenno, T. (2018). Novel ecosustainable peat and oil shale ash-based 3D-printable composite material. Sustainable Mater. Technol., 2018, 17.
https://doi.org/10.1016/j.susmat.2018.e00067

9. Tillmann, D. A. Trace Metals in Combustion Systems. Aca­demic Press, Enserch Environmental, Sacramento, CA, 1994.

10. Lide, D. R. (ed.). CRC Handbook of Chemistry and Physics, 87th ed. CRC Press, Boca Raton, FL, 2006.

11. Holleman, A. F., Wiberg, E., and Wiberg, N. Inorganic Chemistry, 1st ed. Academic Press, San Diego, 2001.

12. Uiga, K., Tenno, T., Zekker, I., and Tenno, T. Dissolution modeling and potentiometric measurements of the SrS–H2O–gas system at normal pressure and temperature at salt concentrations of 0.125–2.924 mM. J. Sulfur Chem., 2011, 32(2), 137–149.
https://doi.org/10.1080/17415993.2011.551937

13. López-Valdivieso, A., Robledo-Cabrera, A., and Uribe-Salas, A. Flotation of celestite with the anionic collector sodium dodecyl sulfate. Effect of carbonate ions. Int. J. Miner. Process., 2000, 60(2), 79–90.
https://doi.org/10.1016/S0301-7516(00)00004-1

14. Terres, E. and Brückner, K. The system Sr(OH)2– Sr(SH)2–H2O. Z. Elektrochem., 1920, 26, 25–32. 

15. Riesenfeld, E. H. and Feld, H. Die Löslichkeit von Calciumsulfid bei Gegenwart von Schwefelwasserstoff. Z. Anorg. Allg. Chem., 1921, 116(1), 213−227.
https://doi.org/10.1002/zaac.19211160121

16. Sun, W., Nešić, S., Young, D., and Woollam, R. C. Equilibrium Expressions Related to the Solubility of the Sour Corrosion Product Mackinawite. Ind. Eng. Chem. Res., 2008, 47(5), 1738–1742.
https://doi.org/10.1021/ie070750i

17. Migdisov, A. A., Williams-Jones, A. E., Lakshtanov, L. Z., and Alekhin, Y. V. Estimates of the second dissociation constant of H2S from the surface sulfidation of crystalline sulfur. Geochim. Cosmochim. Acta, 2002, 66(10), 1713–1725.
https://doi.org/10.1016/S0016-7037(01)00896-1

18. Licht, S., Forouzan, F., and Longo, K. Differential densometric analysis of equilibria in highly concentrated media: determination of the aqueous second acid dissociation constant of H2S.  Anal. Chem., 1990, 62(13), 1356–1360. 
https://doi.org/10.1021/ac00212a030

19. Rao, S. R. and Hepler, L. G. Equilibrium constants and thermodynamics of ionization of aqueous hydrogen sulfide. Hydrometallurgy, 1977, 2(3), 293–299.
https://doi.org/10.1016/0304-386X(77)90009-3

20. Tsonopoulos, C., Coulson, D. M., and Inman, L. B. Ionization constants of water pollutants. J. Chem. Eng. Data, 1976, 21(2), 190–193.
https://doi.org/10.1021/je60069a008

21. Su, Y. S., Cheng, K. L., and Jean, Y. C. Amplified potentiometric determination of pK(00), pK(0), pK(1), and pK(2) of hydrogen sulfides with Ag2S ISE. Talanta, 1997, 44(10), 1757–1763.
https://doi.org/10.1016/S0039-9140(97)00045-3

22. García-Calzada, M., Marbán, M. G., and Fuertes, A. B. Stability and oxidative stabilisation of sulphided calcareous sorbents from entrained flow gasifiers. Chem. Eng. Sci., 2000, 55(18), 3697–3714. 
https://doi.org/10.1016/S0009-2509(00)00024-5

23. Licht, S. and Davis, J. Disproportionation of aqueous sulfur and sulfide: kinetics of polysulfide decomposition. J. Phys. Chem. B, 1997, 101(14), 2540–2545.
https://doi.org/10.1021/jp962661h

24. Piché, S. and Larachi, F. Dynamics of pH on the oxidation of HS with iron (III) chelates in anoxic conditions. Chem. Eng. Sci., 2006, 61(23), 7673–7683.

25. Plennevaux, C., Ferrando, N., Kittel, J., Frégonèse, M., Normand, B., Cassagne, T., Ropital, F., and Bonis, M. pH prediction in concentrated aqueous solutions under high pressure of acid gases and high temperature. Corros. Sci., 2013, 73, 143–149.
https://doi.org/10.1016/j.corsci.2013.04.002

26. Tenno, T., Rikmann, E., Zekker, I., Tenno, T., Daija, L., and Mashirin, A. Modeling equilibrium distribution of carbonaceous ions and molecules in a heterogeneous system of CaCO3–water–gas. Proc. Estonian Acad. Sci., 2016, 65(1), 68–77. 
https://doi.org/10.3176/proc.2016.1.07

27. Tenno, T., Uiga, K., Mashirin, A., Zekker, I., and Rikmann, E. Modeling closed equilibrium systems of H2O–dissolved CO2–solid CaCO3J. Phys. Chem. A, 2017, 121(16), 3094–3100.
https://doi.org/10.1021/acs.jpca.7b00237

28. Tenno, T., Rikmann, E., Uiga, K., Zekker, I., Mashirin, A., and Tenno, T. A novel proton transfer model of the closed equilibrium systems H2O–CO2–CaCO3–NHXProc. Estonian Acad. Sci., 2018, 67(3), 260−270.
https://doi.org/10.3176/proc.2018.3.04

29. Zumdahl, S. S. Chemical Principles, 2nd ed. D. C. Heath and Company, Lexington, MA, 1995.

30. Khodakovskii, I. L., Zhogina, V. V., and Ryzenko, B. N. Dissociation constants of hydrosulphuric acid at elevated temperatures. Geokhimia, 1965, 7, 827−833.

31. Knox, J. Zur Kenntnis der ionenbildung des schwefels und der komplexionen des quecksilber. Z. Elektrochem., 1906, 12, 477–481.
https://doi.org/10.1002/bbpc.19060122802

32. Skoog, D. A., West, D. M., and Holler, F. J. Fundamentals of Analytical Chemistry, 6th ed. Saunders College Publishing, Philadelphia, PA, 1992. 

33. Kelley, C. T. Iterative Methods for Linear and Nonlinear Equations. Society for Industrial and Applied Mathematics, Philadelphia, PA, 1995. 
https://archive.siam.org/books/text books/fr16_book.pdf
https://doi.org/10.1137/1.9781611970944

34. Greenberg, A. E., Trussell, R. R., and Clesceri, L. S. (eds). Standard methods for the examination of water and wastewater, 16th edAmerican Public Health Association, Washington, D.C., 1985. 

35. Pawlak, Z. and Pawlak, A. S. Modification of iodometric determination of total and reactive sulfide in environmental samples. Talanta, 1999, 48(2), 347–353.
https://doi.org/10.1016/S0039-9140(98)00253-7

36. Koh, T. and Okabe, K. Spectrophotometric determination of sulfide, sulfite, thiosulfate, trithionate and tetrathionate in mixtures. Analyst, 1994, 119(11), 2457–2461.
https://doi.org/10.1039/an9941902457

37. Thomas, O. and Burgess, C. UV-visible spectrophotometry of water and wastewater, Volume 27, 1st ed. Elsevier Science, 2007. 

38. Rickard, D. and Luther, G. W. Metal sulfide complexes and clusters. Rev. Mineral. Geochem., 2006, 61(1), 421–504.
https://doi.org/10.2138/rmg.2006.61.8

39. Licht, S. Aqueous solubilities, solubility products and standard oxidation‐reduction potentials of the metal sulfides. J. Electrochem. Soc., 1988, 135(12), 2971–2975.
https://doi.org/10.1149/1.2095471

40. Ropp, R. C. Encyclopedia of the alkaline earth compounds. Elsevier, 2013. 
https://doi.org/10.1016/B978-0-444-59550-8.01001-2

41. Linke, W. F. (ed.). Solubilities, inorganic and metal organic compounds, Volume II: K–Z, 4th ed. American Chemical Society, Washington, D.C., 1965.

Back to Issue