eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Research article
Sustainable energy efficiency in aluminium parts industries utilizing waste heat and equivalent volume with energy management control system; pp. 29–42

Erkata Yandri, Suherman Suherman, Abraham Lomi, Roy Hendroko Setyobudi, Ratna Ariati, Pramudito Pramudito, Ronald Ronald, Yudithia Ardiani, Juris Burlakovs, Muhammad Zahoor, Luqman Ali Shah, Ahmad Fauzi, Rusli Tonda, Iswahyudi Iswahyudi

The global aluminium industry faces a serious challenge in reducing greenhouse gas emissions as the demand for aluminium continues to increase. The aluminium industry has a responsibility to streamline its energy consumption, especially in the production process. There have been many studies discussing energy consumption performance in the industry. However, most of them only discuss energy saving partially, without involving energy consumption with various items produced. This paper proposes an energy savings measurement in the manufacturing industry. An energy baseline consumed per unit volume has been developed using the equivalent volume method with an energy management control system (EMCS). The study takes a case example from the automotive–aluminium component industry. The steps taken in the study are: examining the production process, converting the production volume to equivalent, calculating the energy consumption ratio, developing an energy baseline, simulating the savings performance, and then proposing an EMCS with key performance indicators (KPI) for sustainability. The results show that the development of a baseline using the ratio of energy and an equivalent volume of production gives a better data correlation with an R2 value close to one. From the baseline, the best­demonstrated performance (BDP) can be used as a reference to set energy goals. Furthermore, the data and the deviant deleted have the same baseline value. They differ in energy reduction goal percentages. The practical application of this study is not only in the manufacturing industry but in other industries as well, such as building management. This study contributes to energy savings achieved with EMCS.


1. Gaulin, N. and Le Billon, P. Climate change and fossil fuel production cuts: assessing global supply-side constraints and policy implications. Clim. Policy, 2020, 20(8), 888–901.

2. British Petroleum. Energy Outlook 2020.  (accessed 2023-12-10).

3. Gielen, D., Boshell, F., Saygin, D., Bazilian. M. D., Wagner, N. and Gorini, R. The role of renewable energy in the global energy transformation. Energy Strategy Rev., 2019, 24, 38–50.

4. REN21. Renewables 2020. Global Status Report. (accessed 2023-12-10).

5. IEA. Global Energy Review 2020. (accessed 2023-12-10).

6. Akram, R., Chen, F., Khalid, F., Ye, Z. and Majeed, M. T. Heterogeneous effects of energy efficiency and renewable energy on carbon emissions: evidence from developing countries. J. Clean. Prod., 2020, 247, 119122.  

7. Abdelaziz, E. A., Saidur, R. and Mekhilef S. A review on energy saving strategies in industrial sector. Renew. Sust. Energ. Rev., 2011, 15(1), 150–168.  

8. Firth, A., Zhang, B. and Yang, A. Quantification of global waste heat and its environmental effects. Appl. Energy, 2019, 235, 1314–1334.  

9. Garofalo, E., Bevione, M., Cecchini, L., Mattiussi, F. and Chiolerio, A. Waste heat to power: technologies, current applications, and future potential. Energy Technol., 2020, 8(11), 1–22.  

10. Zhou, Z., Yao, B., Xu, W. and Wang. L. Condition monitoring towards energy-efficient manufacturing: a re­view. Int. J. Adv. Manuf. Technol., 2017, 91, 3395–3415.  

11. Egilegor, B., Jouhara, H., Zuazua, J., Al-Mansour, F., Plesnik, K., Montorsi, L. et al. ETEKINA: analysis of the potential for waste heat recovery in three sectors: aluminium low pressure die casting, steel sector and ceramic tiles manufacturing sector. Int. J. Thermofluids, 2020, 1–2, 100002.  

12. Su, Z., Zhang, M., Xu, P., Zhao, Z., Wang, Z., Huang, H. et al. Opportunities and strategies for multigrade waste heat utilization in various industries: a recent review. Energy Convers. Manag., 2021, 229, 113769.  

13. Wang, R. Q., Jiang, L., Wang, Y. D. and Roskilly, A. P. Energy saving technologies and mass-thermal network optimization for decarbonized iron and steel industry: a review. J. Clean. Prod., 2020, 274, 122997.  

14. Loni, R., Najafi, G., Bellos, E., Rajaee, F., Said, Z. and Mazlan, M. A review of industrial waste heat recovery system for power generation with organic rankine cycle: recent challenges and future outlook. J. Clean. Prod., 2021, 287, 125070.  

15. Araiz, M., Casi, Á., Catalán, L., Martínez, Á. and Astrain, D. Prospects of waste-heat recovery from a real industry using thermoelectric generators: economic and power out­put analysis. Energy Convers. Manag., 2020, 205, 112376.  

16. Gupta, A. and Basu, B. Sustainable primary aluminium production: technology status and future opportunities. Trans. Indian Inst. Met., 2019, 72, 2135–2150.  

17. Haraldsson, J. and Johansson, M. T. Review of measures for improved energy efficiency in production-related processes in the aluminium industry – from electrolysis to recycling. Renew. Sust. Energ. Rev., 2018, 93, 525–548.  

18. Kluczek, A. and Olszewski, P. Energy audits in industrial processes. J. Clean. Prod. 2017, 142, 3437–3453.

19. Sa, A., Thollander, P. and Cagno, E. Assessing the driving factors for energy management program adoption. Renew. Sust. Energ. Rev., 2017, 74, 538–547.  

20. Yandri, E., Ariati, R., Uyun, A. S., Setyobudi, R. H., Anne, O., Susanto. H. et al. Implementation of walk-through audits for designing energy management system: a first step towards an efficient campus. IOP Conf. Ser. Earth Environ. Sci. 2020, 490, 012005.  

21. Schulze, M., Heidenreich, S. and Spieth, P. The impact of energy management control systems on energy efficiency in the German manufacturing industry. J. Ind. Ecol., 2018, 22(4), 813–826.  

22. Johansson, M. T. and Thollander, P. A review of barriers to and driving forces for improved energy efficiency in Swedish industry – recommendations for successful in-house energy management. Renew. Sust. Energ. Rev., 2018, 82, 618–28.  

23. Cai, W., Lai, K., Liu, C., Wei, F., Ma, M., Jia, S. et al. Promoting sustainability of manufacturing industry through the lean energy-saving and emission-reduction strategy. Sci. Total Environ., 2019, 665, 23–32.  

24. Andrei, M., Thollander, P. and Sannö, A. Knowledge demands for energy management in manufacturing industry – a systematic literature review. Renew. Sust. Energ. Rev., 2022, 159, 112168.  

25. Mawson, V. J. and Hughes, B. R. The development of modelling tools to improve energy efficiency in manu­facturing processes and systems. J. Manuf. Syst., 2019, 51, 95–105.  

26. Edgar, T. F. and Pistikopoulos, E. N. Smart manufacturing and energy systems. Comput. Chem. Eng., 2018, 114, 130–144.  

27. Zhang, Y., Ma, S., Yang H., Lv, J. and Liu Y. A big data driven analytical framework for energy-intensive manu­facturing industries. J. Clean. Prod., 2018, 197(1), 57–72.

28. Mardani, A., Zavadskas, E. K., Streimikiene, D., Jusoh, A. and Khoshnoudi, M. A comprehensive review of data envelopment analysis (DEA) approach in energy efficiency. Renew. Sust. Energ. Rev., 2017, 70, 1298–1322.  

29. Zsebik, A. and Novák, D. ISO 50001 – energy planning and monitoring tools and examples. Energy Eng., 2018, 115(6), 46–61.  

30. Lawrence, A., Thollander, P., Andrei, M. and Karlsson, M. Specific energy consumption/use (SEC) in energy manage­ment for improving energy efficiency in industry: meaning, usage and differences. Energies, 2019, 12(2), 247.  

31. Andersson, E. and Tollander, P. Key performance indicators for energy management in the Swedish pulp and paper industry. Energy Strategy Rev., 2019, 24, 229–235.  

32. Wen, X., Cao, H., Hon, B., Chen, E. and Li, H. Energy value mapping: a novel lean method to integrate energy efficiency into production management. Energy, 2021, 217, 119353.  

33. Papapetrou, M., Kosmadakis, G., Cipollina, A., La Commare, U. and Micale, G. Industrial waste heat: estimation of the technically available resource in the EU per industrial sector, temperature level and country. Appl. Therm. Eng., 2018, 138, 207–216.  

34. Yandri, E., Pramudito, P., Ronald, R., Ardiani, Y., Ariati, R., Setyobudi, R. H. et al. Technical design of aluminium scrap processing machines by utilization of direct exhaust air using conveyor drying system. Proc. Estonian Acad. Sci., 2022, 71(2), 178–185.  

35. Dokl, M., Gomilšek, R., Čuček, L., Abikoye, B. and Kravanja, Z. Maximizing the power output and net present value of organic Rankine cycle: application to aluminium industry. Energy, 2022, 239, 122620.  

36. Brough, D. and Jouhara H. The aluminium industry: a review on state-of-the-art technologies, environmental impacts and possibilities for waste heat recovery. Int. J. Thermofluids, 2020, 1–2, 100007.  

37. Haraldsson, J., Johnsson, S., Thollander, P. and Wallén, M. Taxonomy, saving potentials and key performance indicators for energy end‐use and greenhouse gas emissions in the aluminium industry and aluminium casting foundries. Energies, 2021, 14(12), 3571.  

38. Soo, V. K., Peeters, J., Paraskevas, D., Compston, P., Doolan, M. and Duflo, J. R. Sustainable aluminium recycling of end-of-life products: a joining techniques perspective. J. Clean. Prod., 2018, 178, 119–132.  

39. Yandri, E., Ariati, R., Uyun, A. S., Setyobudi, R. H., Susanto, H., Abdullah, K. et al. Potential energy efficiency and solar energy applications in a small industrial laundry: a practical study of energy audit. E3S Web Conf., 2020, 190, 00008.  

40. Minister of Energy and Mineral Resources I. Minister of Energy and Mineral Resources Regulation No. 28, 2016 (in Indonesian).  (accessed 2023-12-10).

41. Kelchevskaya, N. R., Shirinkina, E. V. and Atlasov, I. V. Assessing energy efficiency factors in industrial companies. IOP Conf. Ser. Mater. Sci. Eng., 2020, 862, 042001.  

42. Purba, W., Yandri, E., Setyobudi, R. H., Susanto, H., Wahono, S. K, Siregar, K. et al. Potentials of gas emission reduction (GHG) by the glass sheet industry through energy conservation. E3S Web Conf., 2021, 226, 00047.

43. Limpraptono, F. Y., Nurcahyo, E., Ashari, M. I., Yandri, E. and Jani, Y. Design of power monitoring and electrical control systems to support energy conservation. Proc. Pakistan Acad. Sci., 2021, 58(S), 1–7.  

44. Menghi, R., Papetti, A., Germani, M. and Marconi, M. Energy efficiency of manufacturing systems: a review of energy assessment methods and tools. J. Clean. Prod., 2019, 240, 118276.  

45. Yandri, E., Setyobudi, R. H., Susanto, H., Abdullah, K., Nugroho, Y. A., Wahono, S. K. et al. Conceptualizing Indonesia’s ICT-based energy security tracking system with detailed indicators from smart city extension. E3S Web Conf., 2020, 188, 00007.  

46. Novianto, B., Abdullah, K., Uyun, A. S, Yandri, E., Nur, S. M., Susanto, H. et al. Smart micro-grid performance using renewable energy. E3S Web Conf., 2020, 188, 00005.

47. Marinakis, V., Doukas, H., Tsapelas, J., Mouzakitis, S., Sicilia, Á., Madrazo, L. et al. From big data to smart energy services: an application for intelligent energy management. Future Gener. Comput. Syst., 2020, 110, 572–586.

48. Cui, Y., Kara, S. and Chan, K. C. Manufacturing big data ecosystem: a systematic literature review. Robot. Comput. Integr. Manuf., 2020, 62, 101861.

49. Javied, T., Huprich, S. and Franke, J. Cloud based energy management system compatible with the industry 4.0 requirements. IFAC-PapersOnLine, 2019, 52(10), 171–175.

50. AL-Jumaili, A. H. A., Al Mashhadany, Y. I., Sulaiman, R. and Alyasseri, Z. A. A. A conceptual and systematics for intelligent power management system-based cloud computing: prospects, and challenges. Appl. Sci., 2021, 11(21), 9820.  

51. Rudationo, C. B., Novianto, B., Yandri, E., Susanto, H., Setyobudi, R. H., Uyun, A. S. et al. Techno-economic analysis of rooftop photovoltaic system (RPVS) using thin-frameless solar panels for household customers in Indonesia. Proc. Pakistan Acad. Sci., 2021, 58(S), 131–139.

52. Ayodele, T. R., Ogunjuyigbe, A. S. O. and Nwakanma, K. C. Solar energy harvesting on building’s rooftops: a case of a Nigeria cosmopolitan city. Renew. Energy Focus, 2021, 38, 57–70.  

53. Setyobudi, R. H., Yandri, E., Atoum, M. F. M., Nur, S. M., Zekker, I., Idroes, R. et al. Healthy-smart concept as standard design of kitchen waste biogas digester for urban house­holds. Jordan J. Biol. Sci., 2021, 14(3), 613–620.   

54. Abdullah, K., Uyun, A. S., Soegeng, S. R., Suherman, E., Susanto, H., Setyobudi, R. H. et al. Renewable energy technologies for economic development. E3S Web Conf., 2020, 188, 00016.

55. Burlakovs, J., Vincevica-Gaile, Z., Bisters, V., Hogland, W., Kriipsalu, M., Zekker, I. et al. Application of anaerobic digestion for biogas and methane production from fresh beach-cast biomass. In Proceedings of EAGE GET 2022 – 3rd EAGE Global Energy Transition, The Hague, Netherlands. EAGE, 2022, 1–5.

56. Zhao, J., Ma, L., Zayed, M. E., Elsheikh, A. H., Li, W., Yan, Q. et al. Industrial reheating furnaces: a review of energy efficiency assessments, waste heat recovery poten­tials, heating process characteristics and perspectives for steel industry. Process Saf. Environ. Prot., 2021, 147, 1209–1228.

Back to Issue