eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Signals in nerves from the philosophical viewpoint; pp. 369–375

Jüri Engelbrecht, Kert Tamm, Tanel Peets

Signals in nerves include electrical, mechanical and thermal components and are characterised by the complexity of processes. The modelling of these signals is analysed from the viewpoint of DeLanda, who has demonstrated the possibility of revealing Deleuze’s philosophical theories by using the notions from nonlinear dynamics. It is shown that the mathematical modelling of processes in nerves by the authors of this paper follows the general ideas of multiplicity and causal interactions described by DeLanda.


1. Bogen, J. The Hodgkin–Huxley equations and the concrete model: comments on Craver, Schaffner, and Weber. Philos. Sci., 2008, 75(5), 1034–1046.

2. Brigandt, I., Green, S. and O’Malley, M. A. Systems biology and mechanistic explanation. In The Routledge Handbook of Mechanisms and Mechanical Philosophy (Glennan, S. and Illari, P., eds). Routledge, London, 2017, 362–374.

3. Carrillo, N. and Knuuttila, T. An artifactual perspective on idealization: constant capacitance and the Hodgkin and Huxley model. In Models and Idealizations in Science. Logic, Epistemology, and the Unity of Science (Cassini, A. and Redmond, J., eds), Vol. 50. Springer, Cham, 2021, 51–70.

4. Carrillo, N. and Martínez, S. Scientific inquiry: from meta­p­hors to abstraction. Forthcoming in Perspect. Sci., 2022.

5. Castellani, B. and Gerrits, L. Map of the complexity sciences. 2021. (accessed 2022-10-05).

6. Craver, C. F. Physical law and mechanistic explanation in the Hodgkin and Huxley model of the action potential. Philos. Sci., 2008, 75(5), 1022–1033.

7. Debanne, D., Campanac, E., Bialowas, A., Carlier, E. and Alcaraz, G. Axon physiology. Physiol. Rev., 2011, 91(2), 555–602.

8. DeLanda, M. Intensive Science and Virtual Philosophy. Continuum, London, 2002.

9. DeLanda, M. Space: extensive and intensive, actual and virtual. In Deleuze and Space (Buchanan, I. and Lambert, G., eds). Edinburgh University Press, Edinburgh, 2005, 80–87.

10. DeLanda, M. Assemblage Theory. Edinburgh University Press, Edinburgh, 2016.

11. Deleuze, G. and Guattari, F. A Thousand Plateaus: Capitalism and Schizophrenia. University of Minnesota Press, Minneapolis, MN, 1987.

12. Deleuze, G. and Guattari, F. What is Philosophy? Columbia University Press, New York, NY, 1994.

13. Driessen, A. The role of philosophy as a guide in complex scientific and technological processes. 2016. (accessed 2022-10-05). 

14. Drukarch, B., Holland, H. A., Velichkov, M., Geurts, J. J. G., Voorn, P., Glas, G. and de Regt, H. W. Thinking about the nerve impulse: a critical analysis of the electricity-centered conception of nerve excitability. Prog. Neurobiol., 2018, 169, 172–185.

15. Einstein, A. On the method of theoretical physics. Philos. Sci.1(2), 1934, 163–169.

16. Engelbrecht, J., Peets, T. and Tamm, K. Electromechanical coupling of waves in nerve fibres. Biomech. Model. Mechanobiol., 2018, 17(6), 1771–1783.

17. Engelbrecht, J., Peets, T. and Tamm, K. Continuum me­chanics and signals in nerves. Proc. Estonian Acad. Sci., 2021, 70(1), 3–18.

18. Engelbrecht, J., Peets, T., Tamm, K., Laasmaa, M. and Vendelin, M. On the complexity of signal propagation in nerve fibres. Proc. Estonian Acad. Sci., 2018, 67(1), 28–38.

19. Engelbrecht, J., Tamm, K. and Peets, T. Modeling of comp­lex signals in nerve fibers. Med. Hypotheses, 2018, 120, 90–95.

20. Engelbrecht, J., Tamm, K. and Peets, T. Criteria for model­l­ing wave phenomena in complex systems: the case of signals in nerves. Proc. Estonian Acad. Sci., 2019, 68(3), 276–283.

21. Engelbrecht, J., Tamm, K. and Peets, T. Internal variables used for describing the signal propagation in axons. Contin. Mech. Thermodyn., 2020, 32(6), 1619–1627.

22. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of processes in nerve fibres at the interface of physiology and mathematics. Biomech. Model. Mechanobiol., 2020, 19(6), 2491–2498.

23. Engelbrecht, J., Tamm, K. and Peets, T. On mechanisms of electromechanophysiological interactions between the com­ponents of nerve signals in axons. Proc. Estonian Acad. Sci., 2020, 69(2), 81–96.

24. Engelbrecht, J., Tamm, K. and Peets, T. Modelling of Complex Signals in Nerves. Springer, Cham, 2021.

25. Érdi, P. Complexity Explained. Springer, Berlin, 2007.

26. Goriely, A., Geers, M. G., Holzapfel, G. A., Jayamohan, J., Jérusalem, A., Sivaloganathan, S. et al. Mechanics of the brain: perspectives, challenges, and opportunities. Biomech. Model. Mechanobiol., 2015, 14(5), 931–965.

27. Haken, H. Synergetics: An Introduction : Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry, and Biology. Springer, Berlin, 1978.

28. Heimburg, T. and Jackson, A. D. On soliton propagation in biomembranes and nerves. Proc. Natl. Acad. Sci. USA, 2005, 102(28), 9790–9795.

29. Hodgkin, A. L. The Conduction of the Nervous Impulse. Liverpool University Press, Liverpool, 1964.

30. Holdsworth, D. Becoming interdisciplinary: making sense of Delanda’s reading of Deleuze. Paragraph, 2006, 29(2), 139–156.

31. Hormuzdi, S. G., Filippov, M. A., Mitropoulou, G., Monyer, H. and Bruzzone, R. Electrical synapses: a dy­namic signaling system that shapes the activity of neuronal networks. Biochim. Biophys. Acta – Biomembr., 2004, 1662 (1–2), 113–137.

32. Kaplan, D. M. and Craver, C. F. The explanatory force of dynamical and mathematical models in neuroscience: a mechanistic perspective. Philos. Sci., 2011, 78(4), 601–627.

33. Kitano, H. Systems biology: a brief overview. Science, 2002, 295(5560), 1662–1664.

34. Knyazeva, H. The complex nonlinear thinking: Edgar Morin’s demand of a reform of thinking and the contribution of synergetics. World Futures, 2004, 60(5–6), 389–405.

35. Koch, C. and Laurent, G. Complexity and the nervous system. Science, 1999, 284(5411), 96–98.

36. Levy, A. What was Hodgkin and Huxley’s achievement? Br. J. Philos. Sci., 2014, 65(3), 469–492.

37. Mainzer, K. Thinking in Complexity. The Complex Dynamics of Matter, Mind, and Mankind. Springer, Berlin, 1997.

38. McCulloch, A. D. and Huber, G. Integrative biological modelling in silico. In ‘In Silico’ Simulation of Biological Processes (Bock, G. and Goode, J. A., eds). John Wiley & Sons, Chichester, 2002, 4–25.

39. Morin, E. Restricted complexity, general complexity. In Worldviews, Science and  Us. World Scientific, 2007, 5–29.

40. Mueller, J. K. and Tyler, W. J. A quantitative overview of biophysical forces impinging on neural function. Phys. Biol., 2014, 11(5), 051001.

41. Nail, T. What is an assemblage? Substance, 2017, 46(142), 21–37.

42. Nicolis, G. and Nicolis, C. Foundations of Complex Systems: Emergence, Information and Predicition. World Scientific, Singapore, 2012.

43. Noble, D. 2002. Chair’s introduction. In ‘In Silico’ Simula­tion Biological Processes. Novartis Foundation Symposium  (Bock, G. and Goode, J. A., eds), Vol. 247. Novartis Foundation, London, 1–3.

44. Peets, T. and Tamm, K. Mathematics of nerve signals. In Applied Wave Mathematics II (Berezovski, A. and Soomere, T., eds), Vol. 6. Springer, Cham, 2019, 207–238.

45. Peyrard, M. How is information transmitted in a nerve? J. Biol. Phys., 2020, 46(4), 327–341.

46. Protevi, J. Deleuze, Guattari and emergence. Paragraph, 2006, 29(2), 19–39.

47. Scott, A. Neuroscience: A Mathematical Primer. Springer, New York, NY, 2002.

48. Singh, P., Sahoo, P., Ghosh, S., Saxena, K., Manna, J. S., Ray, K. et al. Filaments and four ordered structures inside a neuron fire a thousand times faster than the membrane: theory and experiment. J. Integr. Neurosci., 2021, 20(4), 777–790.

49. Tamm, K., Peets, T. and Engelbrecht, J. Mechanical waves in myelinated axons.  Biomech. Model. Mechanobiol., 2022, 21(4), 1285–1297.

50. Weber, M. Philosophy of Experimental Biology. Cambridge University Press, Cambridge, 2004.

Back to Issue