eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Model design of an architectural grid-connected photovoltaic system; pp. 326–335

Abraham Lomi, Meita Rumbayan, Yasuke Nakanishi, Kazuaki Iwamura, Noel Regis Estoperez, Udom Lewlomphaisarl, Erkata Yandri, Muhammad Zahoor, Ivar Zekker

Renewable energy sources such as solar, thermal and wind are high energy sources that meet the growing demand for electrical energy worldwide. Renewable energy sources can be stand-alone power generators or multi-generations systems forming a microgrid system that can also be integrated into the main power grid. The integration of renewable energy sources into the main grid system mostly occurs at distribution levels and depends on the scale and location of the renewable energy sources. Renewable energy sources with large-scale capacity can be integrated into the transmission system, while small-scale energy sources can be integrated directly into medium- and low-voltage distribution systems. Both sources have their characteristics, therefore strict planning and analysis is needed. Architecture of a small-scale photovoltaic (PV) system is designed to generate about 3 kW for local demand, such as an office building, with the implementation of microgrid system equipped with smart meters for energy monitoring, and a control scheme is proposed.


1. Krismanto, A. U., Khairullah, H. A., Sulistiawati, I. B., Lomi, A. and Sarkar, D. Probabilistic static voltage stability of power system with integration of PV generators using Monte Carlo simulations. Proc. Pak. Acad. Sci.: A, 2021, 58(S), 73–84.

2. Abdullah, K., Uyun, A. S., Soegeng, R., Suherman, E., Susanto, H., Setyobudi, R. H. et al. Renewable energy technologies for economic development. E3S Web Conf., 2020, 188(00016), 1–8.

3. Rudationo, C. B., Novianto, B., Yandri, E. Susanto, H., Setyobudi, R. H., Uyun, A. S. et al. Techno-economic analysis of rooftop photovoltaic system (RPVS) using thin-frameless solar panels for household customers in Indonesia. Proc. Pak. Acad. Sci.: A, 2021, 58(S), 131–139.

4. Lomi, A. The role of renewable energy: Sumba Iconic Island, an implementation of 100 percent renewable energy by 2020. In Proceedings of the 2nd International Conference on Electrical Systems, Technology and Information (ICESTI), Bali, Indonesia, 9–12 September 2015. Springer, 2016, 173–184.

5. World Resource Institute. Statement: Indonesia submits new 2030 climate targets and first long-term climate strategy (accessed 2021-08-17).

6. Bangun, N., Abdullah, K., Uyun, A. S., Yandri, E., Nur, S. M., Susanto, H. et al. Smart micro-grid performance using re­new­able energy. E3S Web Conf., 2020, 188, 1–11.

7. Soonmin, H., Lomi, A., Okoroigwe, E. C. and Urrego, L. R. Investigation of solar energy: The case study in Malaysia, Indonesia, Colombia, and Nigeria. Int. J. Renew. Energy Res., 2019, 9(1), 86–95.

8. Rodriguez, C. and Bishop, J. D. Organic architecture for small- to large-scale photovoltaic power stations. IEEE Trans. Ind. Electron., 2009, 56(11), 4332–4343.

9. Carrasco, J. M., Bialasiewicz, J. T., Portillo, G. R. C. and León, J. I. Power electronic systems for the grid integration of renewable energy sources: a survey. EEE Trans. Ind. Electron., 2006, 53(4), 1002–1016.

10. Rohiem, N. H., Soeprijanto A., Putra, D. F. U., Syai’in, M., Sulistiawati, I. B., Zahoor, M. and Shah, L. A. Resolving economic dispatch with uncertainty effect in microgrids using hybrid incremental particle swarm optimization and deep learning method. Proc. Pak. Acad. Sci.: A, 2021, 58(S), 119–129.

11. Bahrman, M. P., Johansson, J. G. and Nilson, B. A. Voltage source converter transmission technologies: the right fit for the application. IEEE Xplore, 2003, 3, 1840–1847.

12. Pielahn, M., Mudunkotuwa, K. and Muthumuni, D. Modeling solar converters for harmonic and resonance studies, Int. J. Smart Grid Sust. Energy Tech.,2017, 1(1), 10–13.

13. Iwamura, K., Nakanishi Y., Lewlomphaisarl, U., Estoperez, N. and Lomi, A. Facility planning optimization platform, ggod, for expandable cluster-type micro-grid installations and operations. Proc. Pak. Acad. Sci.: A, 2021, 58(S), 101–107.

14. Kumar, N. M., Atluri, K. and Palaparthi, S. Internet of things (IoT) in photovoltaic systems. In Proceedings of the National Power Engineering Conference (NPEC)Madurai, India, 9–10 March, 2018. IEEE, 2018, 1–4.

15. Yandri, E., Setyobudi, R. H., Susanto, H., Abdullah, K., Nugroho, Y. A., Wahono. S. K. et al. Conceptualizing Indonesia’s ICT-based energy security tracking system with detailed indicators from smart city extension. E3S Web Conf., 2020, 188(00007).

16. Rajapakse, A., Muthumuni, D. and Perera, N. Grid integration of renewable energy systems. In Renewable Energy (Hammons, T. J., ed.). IntechOpen, London, 2009, 109–131.

17. Krismanto, A. U., Mithulananthan, N. and Lomi, A. Dynamic droop control in microgrid for stability enhance­ment considering RES variation. In Proceedings of the 2017 IEEE PES Innovative Smart Grid Technologies Conference Europe (ISGT-Europe), Turin, Italy, 26–29 September 2017. IEEE, 2017, 1–6.

18. Sahan, B., Vergara, A. N., Henze, N., Engler, A. and Zacharias, P. A single-stage PV module integrated converter based on a low-power current-source inverter. IEEE Trans. Ind. Electron., 2008, 55(7), 2602–2609.

19. Kjaer, S. B., Pedersen, J. K. and Blaabjerg, F. A review of single-phase grid-connected inverters for photovoltaic modules. IEEE Trans. Ind. Appl., 2005, 41(5), 1292–1306.

20. Imad, A. E., Yury, N. P. and Mostafa, M. K. Incorporation of a step-up boost converter in photovoltaic power systems for DC applications, Int. J. Smart Grid Sust. Energy Tech., 2017, 1(2), 57–60.

21. IEEE. Std 519-1992 IEEE recommended practices and requirements for harmonic control in electrical power systems › mod_resource › content (accessed 2021-08-20).

Back to Issue