ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045
ADCS development for student CubeSat satellites – TalTech case study; pp. 268–285
PDF | 10.3176/proc.2021.3.06

Authors
Anton Rassõlkin, Toomas Vaimann, Peeter Org, Alar Leibak, Rauno Gordon, Eiko Priidel
Abstract

This paper presents a case study on the development of the Attitude Determination and Control System (ADCS) of Tallinn University of Technology (TalTech) student CubeSat satellites (TTU100 satellite project). To determine the satellite’s attitude in orbit and its rotational speed, the satellites are equipped with sun sensors, magnetometers, and gyroscopes. The satellites use magnetorquers and flywheels in 3-axis as actuators to control rotational speed and attitude. The ADCS is used to convert sensor signals into control reference for the actuators. The research focuses on analysing sensors and actuators used in other CubeSat-type satellites as well as on the process of TTU100 hardware and software development. Special attention is paid to selecting software methods for determining the attitude and evaluating the performance of the developed ADCS. The necessity of further study and dissemination of the mission results is suggested.

References

1. Lee, S., Hutputanasin, A., Toorian, A., Lan, W. and Munakata, R. CubeSat Design Specification Rev. 12. California Polytechnic State University, San Luis Obispo, CA, 2009. 
https://srl.utu.fi/AuxDOC/tke/radmon/cubesat_standard.pdf (accessed 2021-02-21).

2. Farissi, M. S., Carletta, S. and Nascetti, A. Design and hardware-in-the-loop test of an active magnetic detumbling and pointing control based only on three-axis magnetometer data. In Proceedings of the 70th International Astronautical Congress, Washington, D. C., USA, October 21–25, 2019
https://iris.uniroma1.it/handle/11573/1342602#.YN4G1ugzY2w

3. Rassõlkin, A., Orosz, T., Demidova, G. L., Kuts, V., Rjabtšikov, V., Vaimann, T. and Kallaste, A. Implementation of Digital Twins for electrical energy conversion systems in selected case studies. Proc. Est. Acad. Sci., 2021, 70(1), 19–39. 
https://doi.org/10.3176/proc.2021.1.03

4. Larson, W. J. and Wertz, J. R. (eds). Space Mission Analysis and Design. Third edition. Published jointly by Microcosm Press, El Segundo, CA, and Kluwer Academic Publishers, Dordrecht, 2005.

5. Foletti, A. and Kaewkerd, P. SwissCube Phase A ADCS Report. Technical Report. EFPL Lausanne, 2006.

6. Rawashdeh, S. A., Lumpp, J. E., Barrington-Brown, J. and Pastena, M. A stellar gyroscope for small satellite attitude determination. In Proceedings of the 26th AIAA/USU Conference on Small Satellites, Logan, UT, USA, August 2012

7. Pastena, M. and Barrington, J. Satellite Services Ltd ADCS subsystem for CubeSat: 3-axis high precision control in less than 0.5 U. In Proceedings of the 1st IAA Conference on University Satellite Mission and CubeSat Workshop in Europe, Rome, Italy, January 24–29, 2011.  

8. Marin, M. and Bang, H. Design and simulation of a high-speed star tracker for direct optical feedback control in ADCS.  Sensors, 2020, 20(8). 
https://doi.org/10.3390/s20082388

9. Daffalla, M. M., Tagelsir, A. and Kajo, A. S. Hardware selection for attitude determination and control subsystem of 1U cube satellite. In Proceedings of the 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, Sudan, September 7–9, 2015. IEEE, 2016, 118–122. 
https://doi.org/10.1109/ICCNEEE.2015.7381441

10. Wertz, J. R. (ed.) Spacecraft Attitude Determination and Control, vol. 73. Springer, Dordrecht, 1978.
https://doi.org/10.1007/978-94-009-9907-7

11. Nguyen, T., Cahoy, K. and Marinan, A. Attitude determination for small satellites with infrared Earth horizon sensors. J. Spacecr. Rockets, 2018, 55(6), 1466–1475.  
https://doi.org/10.2514/1.A34010

12. Nanosats Database: CubeSat constellations, companies, technologies, missions and more. 
https://www.nanosats.eu/ (accessed 2021-04-20).

13. Koyuncu, E., Baskaya, E., Cihan, M., Isiksal, S., Fidanoglu, M., Akay, C. et al. ITU-pSAT II: High-precision nanosatellite ADCS development project. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies – RAST2011, Istanbul, Turkey, June 9–11, 2011. IEEE, 500–505. 
https://doi.org/10.1109/RAST.2011.5966887

14. Gatsonis, N. A., Eckman, R., Yin, X., Pencil, E. J. and Myers, R. M. Experimental investigations and numerical modeling of pulsed plasma thruster plumes. J. Spacecr. Rockets, 2001, 38(3), 454–464. https://doi.org/10.2514/2.3704 

15. Fléron, R. W. Satellite forensics: Analysing sparse beacon data to reveal the fate of DTUSAT-2. Int. J. Aerosp. Eng., 2019, 2019
https://doi.org/10.1155/2019/8428167

16. Larsen, J. A. and Nielsen, J. D. Development of cubesats in an educational context – RAST2011. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, June 9–11, 2011. IEEE, 777–782. 
https://doi.org/10.1109/RAST.2011.5966948

17. Liu, Y., Liu, K. P., Li, Y. L., Pan, Q. and Zhang, J. A ground testing system for magnetic-only ADCS of nano-satellites. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation Control Conference, Nanjing, China, August 12–14, 2016. IEEE, 2017, 1644–1647. 
https://doi.org/10.1109/CGNCC.2016.7829037

18. Xia, X., Gao, H., Zhang, K., Xu, W. and Sun, G. ADCS scheme and in-orbit results for TZ-1 satellite. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, July 27–29, 2020.  IEEE, 6934–6941. 
https://doi.org/10.23919/CCC50068.2020.9188513

19. Yavuzyilmaz, Ç.,  Akbaş, M., Acar, Y., Gulmammadov, F., Kahraman, Ö., Subaşi, Y. et al. Rasat ADCS flight soft­ware testing with dynamic attitude simulator environment. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies – RAST2011, Istanbul, Turkey, June 9–11, 2011. IEEE, 974–977. 
https://doi.org/10.1109/RAST.2011.5966987

20. Passerone, C., Reynery, L. M., Iannone, S. and Bonjean, M. The ADCS system in the AraMiS satellite. In Proceedings of the 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy, October 2–5, 2012.  IEEE, 2013, 1–7. 
https://doi.org/10.1109/ESTEL.2012.6400187

21. Angadi, C., Manjiyani, Z., Dixit, C., Vigneswaran, K., Avinash, G. S., Narendra. P. R. et al. STUDSAT: Indiaʼs first student Pico-satellite project. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, March 5–12, 2011. IEEE, 1–15. 
https://doi.org/10.1109/AERO.2011.5747469

22. Wahba, G. A least squares estimate of satellite attitude. SIAM Rev., 1965, 7(3), 409–409. 
https://doi.org/10.1137/1007077

23. Markley F. L. and Mortari, D. How to estimate attitude from vector observations. 2000, 103
https://www.researchgate.net/publication/252610346 (accessed 2021-02-24).

24. van der Ha, J. C. Progress in satellite attitude determination and control. Aeronaut. Space Sci. Japan, 2009, 57(66), 191–198. 
https://doi.org/10.14822/kjsass.57.666_191

25. Tanygin, S. and Shuster, M. D. Spin-axis attitude estimation. J. Astronaut. Sci., 2007, 55(1), 107–139. 
https://doi.org/10.1007/BF03256517

26. Markley, F. L. and Mortari, D. Quaternion attitude estimation using vector observations. J. Astronaut. Sci., 2000, 48(2–3), 359–380.  
https://doi.org/10.1007/BF03546284

27. Markley, F. L. Attitude determination using vector obser­vations and the singular value decomposition. J. Astronaut. Sci., 1988, 36(3), 245–258. 

28. Keat, J. E. Analysis of Least-Squares Attitude Determination Routine DOAOP. Computer Sciences Corporation Report CMC/TM-77/6034, 1977.

29. Markley, F. L. and Crassidis, J. L. Fundamentals of Spacecraft Attitude Determination and Control. Springer, New York, NY, 2014. 
https://doi.org/10.1007/978-1-4939-0802-8

30. Shuster, M. D. The quest for better attitudes. J. Astronaut. Sci., 2006, 54(3–4), 657–683. 
https://doi.org/10.1007/BF03256511

31. Mortari, D. ESOQ: A closed-form solution to the Wahba problem. J. Astronaut. Sci., 1997, 45(2), 195–204.  
https://doi.org/10.1007/BF03546376

32. Mortari, D. ESOQ-2 single-point algorithm for fast optimal spacecraft attitude determination. In Proceedings of the Space Flight Mechanics Conference, Huntsville, AL, USA, February 9–12, 1997. AIAA, 817–826. 

33. Kim, Y. and Bang, H. Introduction to Kalman filter and its applications. 
https://doi.org/10.5772/intechopen.80600

34. Garcia, R. V., Kuga, H. K. and Zanardi, M. C. F. P. S. Unscented Kalman filter for determination of spacecraft attitude using different attitude parameterizations and real data. J. Aerosp. Technol. Manag., 2016, 8(1), 82–90. 
https://doi.org/10.5028/jatm.v8i1.509

35. Julier, S. J. and Uhlmann, J. K. New extension of the Kalman filter to nonlinear systems. In Proceedings of SPIE 30681997
https://doi.org/10.1117/12.280797

36. Wan, E. A. and Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada, October 4, 2000. IEEE, 2002, 153–158. 
https://doi.org/10.1109/ASSPCC.2000.882463

37. Paz, R. A. The Design of the PID Controller. New Mexico State University, 2001.

38. Abbas, M. A. and Eklund, J. M. Attitude determination and control sub-system satellite controller. In Proceedings of the 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, May 8–11, 2011. IEEE, 001440–001445. 
https://doi.org/10.1109/CCECE. 2011.6030701

39. Ure, N. K., Kaya, Y. B. and Inalhan, G. The development of a software and hardware-in-the-loop test system for ITU-PSAT II nano satellite ADCS. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, March 5–12, 2011. IEEE, 1–15. 
https://doi.org/10.1109/AERO.2011.5747481

40. Krogstad, T. R., Gravdahl, J. T. and Tøndel, P. Explicit model predictive control of a satellite with magnetic torquers. In Proceedings of the 20th IEEE International Symposium on Intelligent Control, ISIC ’05 and the 13th Mediterranean Conference on Control and Automation, MED ’05, Limassol, Cyprus, June 27–29, 2005. IEEE, 2006, 2005, 491–496. 
https://doi.org/10.1109/.2005.1467064

41. Chen, X. and Wu, X. Model predictive control of cube satellite with magneto-torquers. In Proceedings of the 2010 IEEE International Conference on Information and Automation (ICIA), Harbin, China, June 20–23, 2010. IEEE, 997–1002. 
https://doi.org/10.1109/ICINFA.2010.5512149

42. Stickler, A. C. and Alfriend, K. T. Elementary magnetic attitude control system. J. Spacecr. Rockets, 1976, 13(5), 282–287. 
https://doi.org/10.2514/3.57089

43. Pillet, K. Attitude determination of a cube satellite using sun sensors. Bachelorʼs thesis. Tallinn University of Technology, 2017.

44. Groÿekatthöfer, K. and Yoon, Z. Introduction into quater­nions for spacecraft attitude representation. Technical University of Berlin, 2012.

45. Raja, M., Mathur, M., Guven, U. and Prakash, O. Communication and optimization for satellite attitudes using proportional-integral-derivative controller.  International Journal of Scientific Research in Network Security and Communication, 2019, 7(6), 1–6. 

Back to Issue