eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045
ADCS development for student CubeSat satellites – TalTech case study; pp. 268–285
PDF | 10.3176/proc.2021.3.06

Anton Rassõlkin, Toomas Vaimann, Peeter Org, Alar Leibak, Rauno Gordon, Eiko Priidel

This paper presents a case study on the development of the Attitude Determination and Control System (ADCS) of Tallinn University of Technology (TalTech) student CubeSat satellites (TTU100 satellite project). To determine the satellite’s attitude in orbit and its rotational speed, the satellites are equipped with sun sensors, magnetometers, and gyroscopes. The satellites use magnetorquers and flywheels in 3-axis as actuators to control rotational speed and attitude. The ADCS is used to convert sensor signals into control reference for the actuators. The research focuses on analysing sensors and actuators used in other CubeSat-type satellites as well as on the process of TTU100 hardware and software development. Special attention is paid to selecting software methods for determining the attitude and evaluating the performance of the developed ADCS. The necessity of further study and dissemination of the mission results is suggested.


1. Lee, S., Hutputanasin, A., Toorian, A., Lan, W. and Munakata, R. CubeSat Design Specification Rev. 12. California Polytechnic State University, San Luis Obispo, CA, 2009. (accessed 2021-02-21).

2. Farissi, M. S., Carletta, S. and Nascetti, A. Design and hardware-in-the-loop test of an active magnetic detumbling and pointing control based only on three-axis magnetometer data. In Proceedings of the 70th International Astronautical Congress, Washington, D. C., USA, October 21–25, 2019

3. Rassõlkin, A., Orosz, T., Demidova, G. L., Kuts, V., Rjabtšikov, V., Vaimann, T. and Kallaste, A. Implementation of Digital Twins for electrical energy conversion systems in selected case studies. Proc. Est. Acad. Sci., 2021, 70(1), 19–39.

4. Larson, W. J. and Wertz, J. R. (eds). Space Mission Analysis and Design. Third edition. Published jointly by Microcosm Press, El Segundo, CA, and Kluwer Academic Publishers, Dordrecht, 2005.

5. Foletti, A. and Kaewkerd, P. SwissCube Phase A ADCS Report. Technical Report. EFPL Lausanne, 2006.

6. Rawashdeh, S. A., Lumpp, J. E., Barrington-Brown, J. and Pastena, M. A stellar gyroscope for small satellite attitude determination. In Proceedings of the 26th AIAA/USU Conference on Small Satellites, Logan, UT, USA, August 2012

7. Pastena, M. and Barrington, J. Satellite Services Ltd ADCS subsystem for CubeSat: 3-axis high precision control in less than 0.5 U. In Proceedings of the 1st IAA Conference on University Satellite Mission and CubeSat Workshop in Europe, Rome, Italy, January 24–29, 2011.  

8. Marin, M. and Bang, H. Design and simulation of a high-speed star tracker for direct optical feedback control in ADCS.  Sensors, 2020, 20(8).

9. Daffalla, M. M., Tagelsir, A. and Kajo, A. S. Hardware selection for attitude determination and control subsystem of 1U cube satellite. In Proceedings of the 2015 International Conference on Computing, Control, Networking, Electronics and Embedded Systems Engineering (ICCNEEE), Khartoum, Sudan, September 7–9, 2015. IEEE, 2016, 118–122.

10. Wertz, J. R. (ed.) Spacecraft Attitude Determination and Control, vol. 73. Springer, Dordrecht, 1978.

11. Nguyen, T., Cahoy, K. and Marinan, A. Attitude determination for small satellites with infrared Earth horizon sensors. J. Spacecr. Rockets, 2018, 55(6), 1466–1475.

12. Nanosats Database: CubeSat constellations, companies, technologies, missions and more. (accessed 2021-04-20).

13. Koyuncu, E., Baskaya, E., Cihan, M., Isiksal, S., Fidanoglu, M., Akay, C. et al. ITU-pSAT II: High-precision nanosatellite ADCS development project. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies – RAST2011, Istanbul, Turkey, June 9–11, 2011. IEEE, 500–505.

14. Gatsonis, N. A., Eckman, R., Yin, X., Pencil, E. J. and Myers, R. M. Experimental investigations and numerical modeling of pulsed plasma thruster plumes. J. Spacecr. Rockets, 2001, 38(3), 454–464. 

15. Fléron, R. W. Satellite forensics: Analysing sparse beacon data to reveal the fate of DTUSAT-2. Int. J. Aerosp. Eng., 2019, 2019

16. Larsen, J. A. and Nielsen, J. D. Development of cubesats in an educational context – RAST2011. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies, Istanbul, Turkey, June 9–11, 2011. IEEE, 777–782.

17. Liu, Y., Liu, K. P., Li, Y. L., Pan, Q. and Zhang, J. A ground testing system for magnetic-only ADCS of nano-satellites. In Proceedings of the 2016 IEEE Chinese Guidance, Navigation Control Conference, Nanjing, China, August 12–14, 2016. IEEE, 2017, 1644–1647.

18. Xia, X., Gao, H., Zhang, K., Xu, W. and Sun, G. ADCS scheme and in-orbit results for TZ-1 satellite. In Proceedings of the 2020 39th Chinese Control Conference (CCC), Shenyang, China, July 27–29, 2020.  IEEE, 6934–6941.

19. Yavuzyilmaz, Ç.,  Akbaş, M., Acar, Y., Gulmammadov, F., Kahraman, Ö., Subaşi, Y. et al. Rasat ADCS flight soft­ware testing with dynamic attitude simulator environment. In Proceedings of the 5th International Conference on Recent Advances in Space Technologies – RAST2011, Istanbul, Turkey, June 9–11, 2011. IEEE, 974–977.

20. Passerone, C., Reynery, L. M., Iannone, S. and Bonjean, M. The ADCS system in the AraMiS satellite. In Proceedings of the 2012 IEEE First AESS European Conference on Satellite Telecommunications (ESTEL), Rome, Italy, October 2–5, 2012.  IEEE, 2013, 1–7.

21. Angadi, C., Manjiyani, Z., Dixit, C., Vigneswaran, K., Avinash, G. S., Narendra. P. R. et al. STUDSAT: Indiaʼs first student Pico-satellite project. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, March 5–12, 2011. IEEE, 1–15.

22. Wahba, G. A least squares estimate of satellite attitude. SIAM Rev., 1965, 7(3), 409–409.

23. Markley F. L. and Mortari, D. How to estimate attitude from vector observations. 2000, 103 (accessed 2021-02-24).

24. van der Ha, J. C. Progress in satellite attitude determination and control. Aeronaut. Space Sci. Japan, 2009, 57(66), 191–198.

25. Tanygin, S. and Shuster, M. D. Spin-axis attitude estimation. J. Astronaut. Sci., 2007, 55(1), 107–139.

26. Markley, F. L. and Mortari, D. Quaternion attitude estimation using vector observations. J. Astronaut. Sci., 2000, 48(2–3), 359–380.

27. Markley, F. L. Attitude determination using vector obser­vations and the singular value decomposition. J. Astronaut. Sci., 1988, 36(3), 245–258. 

28. Keat, J. E. Analysis of Least-Squares Attitude Determination Routine DOAOP. Computer Sciences Corporation Report CMC/TM-77/6034, 1977.

29. Markley, F. L. and Crassidis, J. L. Fundamentals of Spacecraft Attitude Determination and Control. Springer, New York, NY, 2014.

30. Shuster, M. D. The quest for better attitudes. J. Astronaut. Sci., 2006, 54(3–4), 657–683.

31. Mortari, D. ESOQ: A closed-form solution to the Wahba problem. J. Astronaut. Sci., 1997, 45(2), 195–204.

32. Mortari, D. ESOQ-2 single-point algorithm for fast optimal spacecraft attitude determination. In Proceedings of the Space Flight Mechanics Conference, Huntsville, AL, USA, February 9–12, 1997. AIAA, 817–826. 

33. Kim, Y. and Bang, H. Introduction to Kalman filter and its applications.

34. Garcia, R. V., Kuga, H. K. and Zanardi, M. C. F. P. S. Unscented Kalman filter for determination of spacecraft attitude using different attitude parameterizations and real data. J. Aerosp. Technol. Manag., 2016, 8(1), 82–90.

35. Julier, S. J. and Uhlmann, J. K. New extension of the Kalman filter to nonlinear systems. In Proceedings of SPIE 30681997

36. Wan, E. A. and Van Der Merwe, R. The unscented Kalman filter for nonlinear estimation. In Proceedings of the IEEE 2000 Adaptive Systems for Signal Processing, Communications, and Control Symposium, Lake Louise, AB, Canada, October 4, 2000. IEEE, 2002, 153–158.

37. Paz, R. A. The Design of the PID Controller. New Mexico State University, 2001.

38. Abbas, M. A. and Eklund, J. M. Attitude determination and control sub-system satellite controller. In Proceedings of the 2011 24th Canadian Conference on Electrical and Computer Engineering (CCECE), Niagara Falls, ON, Canada, May 8–11, 2011. IEEE, 001440–001445. 2011.6030701

39. Ure, N. K., Kaya, Y. B. and Inalhan, G. The development of a software and hardware-in-the-loop test system for ITU-PSAT II nano satellite ADCS. In Proceedings of the 2011 Aerospace Conference, Big Sky, MT, USA, March 5–12, 2011. IEEE, 1–15.

40. Krogstad, T. R., Gravdahl, J. T. and Tøndel, P. Explicit model predictive control of a satellite with magnetic torquers. In Proceedings of the 20th IEEE International Symposium on Intelligent Control, ISIC ’05 and the 13th Mediterranean Conference on Control and Automation, MED ’05, Limassol, Cyprus, June 27–29, 2005. IEEE, 2006, 2005, 491–496.

41. Chen, X. and Wu, X. Model predictive control of cube satellite with magneto-torquers. In Proceedings of the 2010 IEEE International Conference on Information and Automation (ICIA), Harbin, China, June 20–23, 2010. IEEE, 997–1002.

42. Stickler, A. C. and Alfriend, K. T. Elementary magnetic attitude control system. J. Spacecr. Rockets, 1976, 13(5), 282–287.

43. Pillet, K. Attitude determination of a cube satellite using sun sensors. Bachelorʼs thesis. Tallinn University of Technology, 2017.

44. Groÿekatthöfer, K. and Yoon, Z. Introduction into quater­nions for spacecraft attitude representation. Technical University of Berlin, 2012.

45. Raja, M., Mathur, M., Guven, U. and Prakash, O. Communication and optimization for satellite attitudes using proportional-integral-derivative controller.  International Journal of Scientific Research in Network Security and Communication, 2019, 7(6), 1–6. 

Back to Issue