ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Coequalizers and pullbacks in the category Seg of Segal topological algebras; pp. 155–162

Full article in PDF format | 10.3176/proc.2021.2.06

Author
Mart Abel

Abstract

In this paper we describe the coequalizers in the category Seg of Segal topological algebras and present some sufficient conditions for the existence of pullbacks in Seg.


References

1. Abel, M. Generalisation of Segal algebras for arbitrary topological algebras. Period. Math. Hung., 2018, 77(1), 58–68.
https://doi.org/10.1007/s10998-017-0222-z

2. Abel, M. Initial, terminal and zero objects in the category S (B) of Segal topological algebras. Proceedings of the ICTAA 2018; Math. Stud. (Tartu), 2018, 7, 7–24.

3. Abel, M. About products in the category S (B) of Segal topological algebras. Proceedings of the ICTAA 2018; Math. Stud. (Tartu), 2018, 7, 25–32.

4. Abel, M. About some categories of Segal topological algebras. Poincare J. Anal. Appl., 2019, 1, 1–14.
https://doi.org/10.46753/pjaa.2019.v06i01.001

5. Abel, M. Products and coproducts in the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2019, 68(1), 88–99.
https://doi.org/10.3176/proc.2019.1.09

6. Abel, M. About pushouts in the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2019, 68(3), 319–323. 
https://doi.org/10.3176/proc.2019.3.08

7. Abel, M. About the limits of inverse systems in the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69(1), 1–10.
https://doi.org/10.3176/proc.2020.1.01

8. Abel, M. About the cocompleteness of the category S (B) of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69(1), 53–56.
https://doi.org/10.3176/proc.2020.1.06

9. Abel, M. Coproducts in the category S (B) of Segal topological algebras, revisited. Period. Math. Hung., 2020, 81(2), 201–216. 
https://doi.org/10.1007/s10998-020-00328-z

10. Abel, M. Initial objects, terminal objects, zero objects and equalizers in the category Seg of Segal topological algebras. Proc. Estonian Acad. Sci., 2020, 69(4), 361–367.
https://doi.org/10.3176/proc.2020.4.10

11. Mac Lane, S. Categories for the Working Mathematician. Graduate Texts in Mathematics, Vol. 5Springer, New York, NY, 1971. 
https://doi.org/10.1007/978-1-4612-9839-7


Back to Issue