ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Circular economy approach to recycling technologies of post-consumer textile waste in Estonia: a review; pp. 80–90

Full article in PDF format | 10.3176/proc.2021.1.07

Authors
Abrar Hussain, Nikhil Kamboj, Vitali Podgurski, Maksim Antonov, Dmitri Goliandin

Abstract

Circular economy and recycling of post-consumer textile waste is gaining momentum. Its major obstacle is low-quality recycled products. This review article analyses commercial post-consumer textile materials, their recycling and applications. Modernization of fibre processing and recycling technology has assumed an indispensable role in the quality enhancement of post-consumer products. A futuristic overview of fabric materials, their processing, recycling and applications is presented by the example of commercial polymers. Different types of recycling ‒ primary, secondary, tertiary, quaternary, and biological ‒ used with ultramodern compatibilization and cross-linking are explored. Additionally, the conventional and proposed “Just-in-Time” (JIT) remanufacturing and recycling technologies for enhancing circular economy are demonstrated.


References

1. MacArthur, E. Towards the Circular Economy, Economic and Business Rationale for an Accelerated Transition. Ellen MacArthur Foundation, Cowes, UK, 2013, 21‒34. 

2. Bertalanffy, L.v. General System Theory: Foundations, Development, Applications. George Braziller, Inc., New York, NY, USA, 1969. 

3. McDonough, W. and Braungart, M. Design for the triple top line: new tools for sustainable commerce. Corp. Environ. Strategy, 2002. 9(3), 251‒258.
https://doi.org/10.1016/S1066-7938(02)00069-6

4. Stahel, W. The Performance Economy. Palgrave Macmillan, Basingstoke, UK, 2010.
https://doi.org/10.1057/9780230288843

5. Pandit, P., Gayatri, T. N., and Maiti, S. Green and sustainable textile materials using natural re­sources: processing and characterization I. In Green and Sustainable Advanced Materials (Ahmed, S. and Hussain. C. M., eds). Wiley Online Library, 2018, 213‒ 261.
https://doi.org/10.1002/9781119407089.ch9

6. Roos, S., Sandin, G., Zamani, B., and Peters, G. Environmental Assessment of Swedish Fashion Consumption. Five Garments–Sustainable Futures. Mista Future Fashion Report, 2015. 
https://doi.org/10.13140/RG.2.1.3084.9120

7. Steffen, W., Richardson, K., Rockström, J., Cornell, S. E., Fetzer, I., Bennett, E. M., et al. Planetary boundaries: guiding human development on a changing planet. Science, 2015, 347(6223), 1259855.
https://doi.org/10.1126/science.1259855

8. Fortuna, L. M. and Diyamandoglu, V. Optimization of greenhouse gas emissions in second-hand consumer product recovery through reuse platforms. Waste Manage., 2017, 66, 178‒189.
https://doi.org/10.1016/j.wasman.2017.04.032

9. BISFA. Terminology of Man‐Made Fibres, 2009. 
https://www.polyestertime.it/files/Copia-di-BISFA_Terminology2009.pdf

10. CIRFS. Information on Man-made Fibres, 2016. 
http://www.cirfs.org

11. Haslinger, S., Hummel, M., Anghelescu-Hakala, A., Määttänen, M., and Sixta, H. Upcycling of cotton polyester blended textile waste to new man-made cellulose fibers. Waste Manage., 2019, 97, 88‒96.
https://doi.org/10.1016/j.wasman.2019.07.040

12. Liang, S. and Zhang, Z. Comparing urban solid waste recycling from the viewpoint of urban metabolism based on physical input–output model: A case of Suzhou in China. Waste Manage., 2012, 32(1), 220‒225.
https://doi.org/10.1016/j.wasman.2011.08.018

13. Akelah, A. Functionalized Polymeric Materials in Agri­culture and the Food Industry. Springer, New York, NY, 2013.
https://doi.org/10.1007/978-1-4614-7061-8

14. Stichnothe, H. and Azapagic, A. Life cycle assessment of recycling PVC window frames. Resour., Conserv. Recycl., 2013, 71, 40‒47.
https://doi.org/10.1016/j.resconrec.2012.12.005

15. Pensupa, N., Leu, S.-Y., Hu, Y., Du, C., Liu, H., Jing, H., et al. Recent trends in sustainable textile waste recycling methods: current situation and future prospects. In Chemistry and Chemical Technologies in Waste Valoriza­tionTopics in Current Chemistry Collections (Lin, C., ed.). Springer, Cham, 2017, 189‒228.
https://doi.org/10.1007/978-3-319-90653-9_7

16. Hawley, J. M. Textile recycling: a systems perspective. In Recycling in Textiles. Woodhead Publishing, Cambridge, UK, 2006.
https://doi.org/10.1533/9781845691424.1.7

17. 2017 Preferred Fiber and Materials Market Report. Textile Exchange.

18. Xanthos, M. Recycling of the #5 polymer (2012, 337(6095), 700‒702). Science, 2012, 338(6107), 604.
https://doi.org/10.1126/science.1221806

19. Papadopoulou, C. P. and Kalfoglou, N. K. Comparison of compatibilizer effectiveness for PET/PP blends: their me­chanical, thermal and morphology characterization. Polymer, 2000, 41(7), 2543‒2555.
https://doi.org/10.1016/S0032-3861(99)00442-5

20. Zamani, B., Svanström, M., Peters, G., and Rydberg, T. A carbon footprint of textile recycling: a case study in Sweden. J. Ind. Ecol., 2015, 19(4), 676‒687.
https://doi.org/10.1111/jiec.12208

21. Runnel, A. Supporting eco-innovations towards creating environmentally neutral material flows in Estonian textile and apparel industry. University of Tartu, Estonia, 2013.

22. Jani, Y., Kriipsalu, M., Pehme, K.-M., Burlakovs, J., Hogland, M., Denafas, G., et al. Composition of waste at an early EU-landfill of Torma in Estonia. Iranian Journal of Energy and Environment, 2017, 8(2), 112‒117.

23. Rana, S. and Fangueiro, R. Fibrous and Textile Materials for Composite Applications. Springer, Singapore, 2016.
https://doi.org/10.1007/978-981-10-0234-2

24. Wang, Y. Fiber and textile waste utilization. Waste Biomass Valorization, 2010, 1, 135‒143.
https://doi.org/10.1007/s12649-009-9005-y

25. Fangueiro, R. and Rana, S. (eds). Natural Fibres: Advances in Science and Technology Towards Industrial Applications. Springer, Netherlands, 2016.
https://doi.org/10.1007/978-94-017-7515-1

26. Woolridge, A. C., Ward, G. D., Phillips, P. S., Collins, M., and Gandy, S. Life cycle assessment for reuse/recycling of donated waste textiles compared to use of virgin material: An UK energy saving perspective. Resour. Conserv.  Recycl., 2006, 46(1), 94‒103.
https://doi.org/10.1016/j.resconrec.2005.06.006

27. Boustead, I. Eco-profiles of the European Plastics Industry. Polyethylene Terephthalate (PET) (Amorphous grade). PlasticsEurope Report, March 2005.

28. Scheirs, J. Polymer Recycling: Science, Technology and Applications. J. Wiley & Sons, Chichester, UK, 1998. 

29. Wang, Y. Recycling in Textiles. Woodhead Publishing, Cambridge, UK, 2006.

30. Peoples, R. Carpet stewardship in the United States – a com­mitment to sustainability. In Recycling in Textiles (Wang, Y., ed.). Woodhead Publishing, Cambridge, UK, 2006, 38‒45.
https://doi.org/10.1533/9781845691424.1.38

31. Andrady, A. An environmental primer. In Plastics and the Environment (Andrady, A., ed.). Wiley Interscience, Hoboken, NY, USA, 2003, 3‒76.
https://doi.org/10.1002/0471721557

32. Bajaj, P. and Sharma, N. D. Reuse of polymer and fibre waste. In Manufactured Fibre Technology (Gupta, V. B. and Kothari, V. K., eds). Springer, Dordrecht, 1997, 595‒632.
https://doi.org/10.1007/978-94-011-5854-1_20

33. Martin, D. L., Wang, Q., and Klevisha, D. Challenges of FTNIR for recycling of fibrous textile and carpet waste industries. Presentation at 9th Annual Conference on Recycling of Polymer, Textile and Carpet Waste, Dalton, GA, USA, May 10‒11, 2004.

34. Realff, M. Systems planning for carpet recycling. In Recycling in Textiles. Woodhead Publishing, Cambridge, UK, 2006, 46‒57.
https://doi.org/10.1533/9781845691424.1.46

35. Kip, B. J., Peters, E. A. T., Happel, J., Huth-Fehre, T., and Kowol, F. Method of identifying post consumer or post industrial waste carpet utilizing a hand-held infrared spectrometer. US Patent 5952660, 1999.

36. Bohnhoff, A. and Petershans, J. Decentralised technology for the sorting of textile floor coverings. Presentatino at 7th Annual Conference on Recycling of Fibrous Textile and Carpet Waste, Dalton, GA, USA, May 13‒14, 2002.

37. White, D. W. System and method for decomposing reclaim­ing and refusing waste carpet materials. US Patent 6029916, 2000.

38. Bacon, F. C., Holland, W. R., and Holland, L. H. Claw drum for shredding used carpet. US Patent 5897066, 1999.

39. Deschamps, M. Shredding apparatus with shearing action. US Patent 5829690, 3 November 1998.

40. Sferrazza, R. A., Handermann, A. C., Atwell, C. H., and Yamamoto, D. K. Carpet recycling process and system. US Patent 5535945, 16 July 1996.

41. Yamamoto, D. K. and Viveen, P. Industrial Rotary Shredder. US Patent 5516050, 1996.

42. Esteve-Turrillas, F. A. and de la Guardia, M. Environmental impact of recover cotton in textile industry. Resour. Conserv. Recycl., 2017, 116, 107‒115.
https://doi.org/10.1016/j.resconrec.2016.09.034

43. Dahlbo, H., Aalto, U. K., Eskelinen, H., and Salmenperä, H. Increasing textile circulation – consequences and require­ments. Sustain. Prod. Consum., 2017, 9, 44‒57.
https://doi.org/10.1016/j.spc.2016.06.005

44. Zamani, B., Sandin, G., and Peters, G. M. Life cycle assessment of clothing libraries: can collaborative con­sumption reduce the environmental impact of fast fashion? J. Clean Prod., 2017, 162, 1368‒1375.
https://doi.org/10.1016/j.jclepro.2017.06.128

45. Beton, A., Farrant, L., Gibon, T., Le Guern, Y., Desaxce, M., Perwueltz, A., et al. Environmental improvement potential of textiles (IMPRO textiles). European Commission’s JRC Scientific and Policy Report, 2014.

46. Glew, D., Stringer, L. C., Acquaye, A. A., and McQueen-Mason, S. How do end of life scenarios influence the environmental impact of product supply chains? Comparing biomaterial and petrochemical products. J. Clean. Prod., 2012, 29‒30, 122‒131.
https://doi.org/10.1016/j.jclepro.2012.02.005

47. Palm, D., Harris, S., and Ekvall, T. Livscykelanalys av svensk textilkonsumtion. Underlagsrapport till Natur­vårdsverkets regeringsuppdrag om nya etappmål. IVL  Report B2133, Swedish Environmental Research Insitute,  2013.

48. Muthu, S. S., Li, Y., Hu, J. Y., and Ze, L. Carbon footprint reduction in the textile process chain: Recycling of textile materials. Fibers Polym., 2012, 13(8), 1065‒1070.
https://doi.org/10.1007/s12221-012-1065-0

49. Williams, T. G. J. L., Heidrich, O., and Sallis, P. J. A case study of the open-loop recycling of mixed plastic waste for use in a sports-field drainage system. Resour. Conserv. Recycl., 2010, 55(2), 118‒128.
https://doi.org/10.1016/j.resconrec.2010.08.002

50. Al-Salem, S. M., Lettieri, P., and Baeyens, J. The valorization of plastic solid waste (PSW) by primary to quaternary routes: From re-use to energy and chemicals. Prog. Energy Combust. Sci., 2010, 36(1), 103‒129.
https://doi.org/10.1016/j.pecs.2009.09.001

51. Baillie, C., Matovic, D., Thamae, T., and Vaja, S. Waste-based composites – Poverty reducing solutions to environmental problems. Resour. Conserv. Recycl., 2011, 55(11), 973‒978.
https://doi.org/10.1016/j.resconrec.2011.05.006

52. Achilias, D. S., Andriotis, L., Koutsidis, I. A., Louka, D. A., Nianias, N. P., and Siafaka, P. Recent advances in the chemical recycling of polymers (PP, PS, LDPE, HDPE, PVC, PC, Nylon, PMMA). In Material Recycling ‒ Trends and Perspectives. InTechOpen, 2012.

53. Vermeulen, I., Van Caneghem, J., Block, C., Baeyens, J., and Vandecasteele, C. Automotive shredder residue (ASR): Reviewing its production from end-of-life vehicles (ELVs) and its recycling, energy or chemicals’ valorisation. J. Hazard. Mater., 2011, 190(1‒3), 8‒27.
https://doi.org/10.1016/j.jhazmat.2011.02.088

54. Luzuriaga, S., Kovářová, J., and Fortelný, I. Degradation of pre-aged polymers exposed to simulated recycling: properties and thermal stability. Polym. Degrad. Stab., 2006, 91(6), 1226‒1232.
https://doi.org/10.1016/j.polymdegradstab.2005.09.004

55. Hadi, A. J., Najmuldeen, G. F., and Yusoh, K. B. Dissolution/reprecipitation technique for waste polyolefin recycling using new pure and blend organic solvents. J. Polym. Eng., 2013, 33(5), 471‒481.
https://doi.org/10.1515/polyeng-2013-0027

56. Brems, A., Baeyens, J., and Dewil, R. Recycling and recovery of post-consumer plastic solid waste in a European context. Therm. Sci., 2012, 16(3), 669–685. 
https://doi.org/10.2298/TSCI120111121B

57. Andrady, A. L. (ed.). Plastics and the Environment. John Wiley & Sons, Hoboken, NY, USA, 2003.
https://doi.org/10.1002/0471721557

58. Aguado, J. and Serrano, D. P. Feedstock Recycling of Plastic Wastes. Royal Society of Chemistry, 2007.

59. Achilias, D. S., Tsintzou, G. P., Nikolaidis, A. K., Bikiaris, D. N., and Karayannidis, G. P. Aminolytic depoly­merization of poly(ethylene terephthalate) waste in a microwave reactor. Polym. Int., 2011, 60(3), 500‒506.
https://doi.org/10.1002/pi.2976

60. Hamad, K., Kaseem, M., and Deri, F. Recycling of waste from polymer materials: An overview of the recent works. Polym. Degrad. Stab., 2013, 98(12), 2801‒2812.
https://doi.org/10.1016/j.polymdegradstab.2013.09.025

61. Bose, D., Barman, S., and Chakraborty, R. Recent trends in valorization of non-metallic ingredients of waste printed circuit board: a review. In Emerging Technologies for Waste Valorization and Environmental Protection (Ghosh, S., Bhattacharya, C., Satyanarayana, S., and Varadarajan, S., eds). Springer, Singapore, 2020, 113‒126.
https://doi.org/10.1007/978-981-15-5736-1_11

62. Zhuo, C., Richter, H., and Levendis, Y. A. Carbon nano­tube production from Ethylene in CO2/N2 environments. J. Energy Resour. Technol., 2018, 140(8), 085001.
https://doi.org/10.1115/1.4039328

63. Wen, Y., Kierzek, K., Chen, X., Gong, J., Liu, J., and Niu, R., et al. Mass production of hierarchically porous carbon nanosheets by carbonizing “real-world” mixed waste plastics toward excellent-performance supercapacitors. Waste Manage., 2019, 87, 691‒700.
https://doi.org/10.1016/j.wasman.2019.03.006

64. Liu, Y.-T., Song, H.-Y., Yao, T.-T., Zhang, W.-S., Zhu, H., and Wu, G.-P. Effects of carbon nanotube length on interfacial properties of carbon fiber reinforced ther­moplastic composites. J. Mater. Sci., 2020, 55, 15467‒15480.
https://doi.org/10.1007/s10853-020-05129-w

65. Cho, H.-S., Moon, H.-S., Kim, M., Nam, K., and Kim, J.-Y. Biodegradability and biodegradation rate of poly(caprolactone)-starch blend and poly(butylene succinate) biodegradable polymer under aerobic and anaerobic environment. Waste Manage., 2011, 31(3), 475‒480.
https://doi.org/10.1016/j.wasman.2010.10.029

66. Schnürer, A. and Schnürer, J. Fungal survival during anaerobic digestion of organic household waste. Waste Manage., 2006, 26(11), 1205‒1211.
https://doi.org/10.1016/j.wasman.2005.09.007

67. Gross, R. A. and Kalra, B. Biodegradable polymers for the environment. Science, 2002, 297(5582), 803‒807.
https://doi.org/10.1126/science.297.5582.803

68. Kindler, H. and Nikles, A. Energy expenditure in the manufacturing of raw materials, calculation principles and energy equivalent data of plastics. Kunststoffe, 1980, 70(12), 802‒807.

69. Conesa, J. A., Font, R., Fullana, A., Martín-Gullón, I., Aracil, I., Gálvez, A., et al. Comparison between emissions from the pyrolysis and combustion of different wastes. J. Anal. Appl. Pyrolysis, 2009, 84(1), 95‒102.
https://doi.org/10.1016/j.jaap.2008.11.022

70. European Commission. 
https://ec.europa.eu


Back to Issue