ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Chemical constituents and biological activities of Balanophora fungosa varietas globosa growing in Vietnam, as well as comparative chromatography with some species of the genus Balanophora J. R. & G. Forst; pp. 40–50

Full article in PDF format | 10.3176/proc.2021.1.01

Authors
Nguyen Thanh Tung, Nguyen Quang Hung, Nguyen Thi Luyen, Nguyen Tien Dat, Tõnu Püssa, Linda Rusalepp, Mihkel Ilisson, Ain Raal

Abstract

The chemical composition and biological activities of Balanophora fungosa var. globosa (BFG) were studied for the first time. Also, the chemical composition of some other Balanophora species was established for comparison. Phenolic compounds isolariciresinol, gallic acid, pinoresinol, methyl caffeate, and epipinoresinol-4-O-β-D-glucopyranoside were isolated from Balanophora fungosa var. globosa collected in Vietnam and identified by the NMR analysis. Some in vitro biological activities of the isolated compounds, including the inhibitory effect on NO production and cytotoxic effects, were evaluated. The chromatographic methods were developed to determine the chemical fingerprints of BFG and its very close taxon subsp. indica (Arn.) B. Hansen (BFI), also of the two new species recently recorded for the flora of Vietnam Balanophora tobiracola Makino (BT) and Balanophora subcupularis P.C. Tam (BS). Among the isolated compounds, isolariciresinol showed a moderate inhibitory effect on NO production (I% = 56.02 at concentration of 100 µg/mL), while gallic acid at concentration of 100 μg/mL demonstrated moderate cytotoxicity against cancer cell lines MCF-7 (human breast carcinoma) and PC3 (human prostate gland carcinoma). The HPTLC analysis showed similarities in the chemical compositions of BFG and BFI, as well as the difference between their compositions and these of BT and BS. O-caffeoyl-O-galloyl-glucoside I, caffeic acid glucoside, O-caffeoyl-di-galloyl-β-D-glucoside V, and 1-O-caffeoyl-3-O-galloyl-4,6-HHDP-β-D-glucoside as principal compounds were identified among 31 phenolic substances of BFI and BFG by using HPLC-MS/MS.


References

Ban, N. T. 2005. List of Plants in Vietnam, 3rd vol. Agriculture Publishing House, Hanoi (in Vietnamese).

Bui, H. T., Nguyen, X. N., Pham, H. Y., Tran, H. Q., Nguyen, T.C., Do, T. T., et al. 2019. Three new muurolane-type sesquit­erpene glycosides from the whole plants of Balanophora fungosa subsp. indica. Nat. Prod. Res.,
https://doi.org/10.1080/14786419.2019.1602831

Chiou, W. F., Shen, C. C., and Lin, L. C. 2011. Anti-inflammatory principles from Balanophora laxiflora. J. Food Drug. Anal.19(4), 502–508.
https://doi.org/10.38212/2224-6614.2216

Dai, Z., Wang, G. L., Wang, F., Ma, S. C., and Liu, R. C. 2005. Chemical constituents from Balanophora simaoensis (I). Chin. Tradit. Herb. Drugs36(6), 830–831.

Dai, Z., Wang, G. L., Liu, Y., Zhang, J., and Lin, R. C. 2005. The chemical constituents study of Balanophora simaoensisChin. J. Chin. Mat. Med., 30(14), 1131–1132.

Dat, N. T., Binh, P. T. X., Quynh, L. T. P., Huong, H. T., and Minh, C. V. 2012. Sanggenon C and O inhibit NO production, iNOS expression and NF-κB activation in LPS-induced RAW264.7 cells. Immunopharmacol. Immunotoxicol.34(1), 84–88. 

Deyama, T., Ikawa, T., Kitagawa, S., and Nishibe, S. 1987. The constituents of Eucommia ulmoides Oliv. V. Isolation of dihydroxydehydrodiconiferyl alcohol isomers and phenolic compounds. Chem. Pharm. Bull., 35(5), 1785–1789.
https://doi.org/10.1248/cpb.35.1785

Eklund, P., Sillanpää, R., and Sjöholm, R. 2002. Synthetic transformation of hydroxymatairesinol from Norway spruce (Picea abies) to 7-hydroxysecoisolariciresinol, (+)-lariciresinol and (+)-cyclolariciresinol. J. Chem. Soc., Perkin Trans. 12(16), 1906–1910.
https://doi.org/10.1039/B202493D

El-Domiaty, M. M., El-Shafae, A. M., Abdel-Aal, M. M., and Abou-Hashem, M., M. 2002. The first report on the occurrence of furofuranoid lignan glucosides in Acanthaceae. Pharm. Biol.40(2), 96–102.
https://doi.org/10.1076/phbi.40.2.96.5848

Eldahshan, O. A. 2011. Isolation and structure elucidation of phenolic compounds of carob leaves grown in Egypt. Curr. Res. J. Biol. Sci., 3(1), 52–55.

Fang, L., He, T.-T., Wang, X., and Zhou, J. 2018. Isolation and purification of galloyl, caffeoyl, and hexahydroxydiphenoyl esters of glucoses from Balanophora simaoensis by high-speed countercurrent chromatography and their antioxidant activities in vitro. Molecules23(8), 2027.
https://doi.org/10.3390/molecules23082027

Hansen, B. 1972. The genus Balanophora J.R. & G. Forster – A taxonomic Monograph. Dansk Bot. Ark. 28, Copenhagen.

Hou, Q.-Y., Dai, Z., Cheng, X.-L., and Lin R.-C. 2009. Comparative study on chemical components of 5 species of Balanophora. Chin. J. Pharm. Anal.29(5), 697–701.

Ito, K., Itoigawa, M., Haruna, M., Murata, H., and Furukawa, H. 1980. Dihydrochalcones from Balanophora tobiracolaPhytochemistry19(3), 476–477. 
https://doi.org/10.1016/0031-9422(80)83209-2

Panthama, N., Kanokmedhakul, S., and Kanokmedhakul, K. 2009. Galloyl and hexahydroxydiphenoyl esters of phenylpropanoid glucosides, phenylpropanoids and phenylpropanoid glucosides from rhizome of Balanophora fungosa. Chem. Pharm. Bull.57(12), 1352–1355.
https://doi.org/10.1248/cpb.57.1352

Rezaei-Seresht, H., Cheshomi, H., Fakanji, F., Movahedi-Motlagh, F., Hashemian, M., and Mireskandari, E. 2019. Cytotoxic activity of caffeic acid and gallic acid against MCF-7 human breast cancer cells: An in silico and in vitro study. Avicenna J. Phytomedicine9(6), 574–586.

Rusalepp, L., Raal, A., Püssa, T., and Mäeorg, U. 2017. Comparison of chemical composition of Hypericum perforatum and H. maculatum in Estonia. Biochem. Syst. Ecol., 73,41–46. 
https://doi.org/10.1016/j.bse.2017.06.004

Saffari-Chaleshtori, J., Heidari-Sureshjani, E., Moradi, F., Jazi, H. M., and Heidarian, E. 2017. The study of apoptosis-inducing effects of three pre-apoptotic factors by gallic acid, using simulation analysis and the comet assay technique on the prostatic cancer cell line PC3. MalaysJ. Med. Sci.24(4),18–29.
https://doi.org/10.21315/mjms2017.24.4.3

Scudiere, D. A., Shoemaker, R. H., Paull, K. D., Monks, A., Tierney, S., Nofziger, T. H., et al. 1988. Evaluation of a soluble tetrazolium/formazan assay for cell growth and drug sensitivity in culture using human and other tumor cell lines. Cancer Res., 48(17), 4827–4833.

Tanaka, T., Uehara, R., Nishida, K., and Kouno, I. 2005. Galloyl, caffeoyl and hexahydroxydiphenoyl esters of dihy­drochalcone glucosides from Balanophora tobiracolaPhytochemistry, 66(6), 675–681.
https://doi.org/10.1016/j.phytochem.2004.10.018

Tung, N. T., Quan N. V., Anh. N. P., Phuong. N. V., and Hung, N. Q. 2019. Preliminary phytochemical evaluation and in vitro xanthine oxidase inhibitory activity of Balanophora subcupularis P. C. Tam and Balanophora tobiracola Makino (Balanophoraceae). Trop. J. Nat. Prod. Res.3(1), 6–9. 
https://doi.org/10.26538/tjnpr/v3i1.2

Vo, V. C. 2012. Dictionary of Vietnamese medicinal plants (New edition), vol. 1. Medical Publishing House, Hanoi (in Vietnamese).

Wang, X., Liu, Z., Qiao, W., Cheng, R., Liu, B., and She, G. 2012. Phytochemicals and biological studies of plants from the genus Balanophora. Chem. Cent. J., 6(1), 79. 
https://doi.org/10.1186/1752-153X-6-79

Xiang, M., Su, H., Hu, J., and Yan, Y. 2011. Isolation, identification and determination of methyl caffeate, ethyl caffeate and other phenolic compounds from Polygonum amplexicaule var. sinenseJ. Med. Plants Res., 5(9),1685–1691.

Zhou, J., Du, S.-Y., Fang, Z.-Y., and Zeng, Z. 2019. New butenolides with anti-inflammatory activity from Balanophora fungosaNat. Prod. Res. 
https://doi.org/10.1080/14786419.2019.1645663


Back to Issue