ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Evaluation of surface roughness in the turning of mild steel under different cutting conditions using backpropagation neural network; pp. 109–115

Full article in PDF format | https://doi.org/10.3176/proc.2020.2.02

Authors
Mohamed Rafik Noor Mohamed Qureshi, Shubham Sharma, Jujhar Singh, Shaik Dawood Abdul Khadar, Rahmath Ulla Baig

Abstract

This paper exhibits a model of feed­forward backpropagation neural network system for estimating surface roughness in the turning operation. The workpiece of mild steel (carbon content 0.2%; hardness125 BHN) has been taken for turning operation under different cutting conditions with high­speed steel (HSS) tool (carbon content 0.75%; vanadium content 1.1%, molybdenum content 0.65%, chromium content 4.3%, tungsten content 18%, cobalt content 5%, hardness 290 BHN). Experiments have been ex­ ecuted on lathe machine HMT LB20. In the neural network model, the speed, feed and depth of cut have been considered as process parameters and surface roughness was taken as a response parameter. The neural network was developed based on initial experimental data. The developed neural network model during testing and validation was found to be within acceptable limits. The estimated maximum error was expected to be 10.77%. Error below 20% was considered reasonable, taking into account the fact that there is an intrinsic irregularity in metal cutting procedure.


References
1. Abouelatta, O. B. and Mádl, J. Surface roughness prediction based on cutting parameters and tool vibrations in turning operations. J. Mater. Process. Technol., 2001, 118(1-3), 269-277.
https://doi.org/10.1016/S0924-0136(01)00959-1
 
2. Chien, W.­T. and Tsai, C.­S. The investigation on prediction of tool wear and the determination of optimum cutting conditions in machining 17­4 PH stainless steel. J. Mater. Process. Technol., 2003, 140(1-3), 340-345.
https://doi.org/10.1016/S0924-0136(03)00753-2
 
3. Das, S., Roy, R., and Chattopadhyay, A. B. Evaluation of wear of turning carbide inserts using neural networks. Int. J. Mach. Tools Manuf., 1996, 36(7),789-797.
https://doi.org/10.1016/0890-6955(95)00089-5
 
4. Dixit, U. S., Risbood, K. A., and Sahasrabudhe, A. D. Prediction of surface roughness and dimensional deviation by measuring cutting forces and vibrations in turning process. J. Mater. Process. Technol., 2003, 132(1-3), 203-214.
https://doi.org/10.1016/S0924-0136(02)00920-2
 
6. Senthilkumar, N., Tamizharasan, T., and Anandakrishnan, V. An ANN approach for predicting the cutting inserts performances of different geometries in hard turning. Adv. Prod. Eng. Manage., 2013, 8(4), 231-241.
https://doi.org/10.14743/apem2013.4.170
 
7. Kohli, A. and Dixit, U. S. A neural­network­based methodology for the prediction of surface roughness in a turning process. Int. J. Adv. Manuf. Tech., 2004, 25(1-2), 118-129.
https://doi.org/10.1007/s00170-003-1810-z
 
8. Lee, B. Y. and Tarng, Y. S. Surface roughness inspection by computer vision in turning operations. Int. J. Mach. Tools Manuf., 2001. 41(9), 1251-1263.
https://doi.org/10.1016/S0890-6955(01)00023-2
 
9. Lee, S. S. and Chen, J. C. On­line surface roughness recognition system using artificial neuralnetworks system in turning operations. Int. J. Adv. Manuf. Tech., 2003, 22(7), 498-509.
https://doi.org/10.1007/s00170-002-1511-z
 
10. Rangwala, S. S. and Dornfeld, D. A. Learning and optimization of machining operations using computing abilities of neural networks. IEEE Trans. Syst. Man Cybern., 1989, 19(2), 299-314.
https://doi.org/10.1109/21.31035
 
11. Selvam, M. S. Tool vibration and its influence on surface roughness in turning. Wear, 1975, 35(1), 149-157.
https://doi.org/10.1016/0043-1648(75)90149-0
 
12. Ugrasen, G., Ravindra, H. V., and Naveen Prakash, G. V. Keshavamurthy, R. Process Optimization and Estimation of Machining Performances Using Artificial Neural Network in Wire EDM. Procedia Mater. Sci., 2014, 6, 1752-1760.
https://doi.org/10.1016/j.mspro.2014.07.205
 
13. Paturi, U. M. R., Devarasetti, H., and Narala, S. K. R. Application of regression and artificial neural network analysis in modelling of surface roughness in hard turning of AISI 52100 Steel. Mater. Today: Proc., 2018, 5(2), 4766-4777.
https://doi.org/10.1016/j.matpr.2017.12.050
 
14. Simunovic, G., Svalina, I., Simunovic, K., Saric, T., Havrlisan, S., and Vukelic, D. Surface roughness assessing based on digital image features. Adv. Prod. Eng. Manage., 2016, 11(2), 93-104.
https://doi.org/10.14743/apem2016.2.212
 
15. D'Mello, G., Pai, P. S., and Prashanth, A. Surface Roughness Analysis in High Speed Turning of Ti­6Al­4V Using Coated Carbide Inserts: Experimental and Modeling Studies. Tribol. Ind., 2018, 40(3), 457-476.
https://doi.org/10.24874/ti.2018.40.03.12
 
16. Alharthi, N. H., Bingol, S., Abbas, A. T., Ragab, A. E., El­Danaf, E. A., and Alharbi, H. F. Optimizing Cutting Conditions and Prediction of Surface Roughness in Face Milling of AZ61 Using Regression Analysis and Artificial Neural Network. Adv. Mater. Sci. Eng., 2017, 7560468. https://doi.org/10.1155/2017/7560468
https://doi.org/10.1155/2017/7560468
 
17. Yanis, M., Mohruni, A. S., Sharif, S., Yani, I., Arifin, A., and Khona'ah, B. Application of RSM and ANN in Predicting Surface Roughness for Side Milling Process Under Environmentally Friendly Cutting Fluid. J. Phys.: Conf. Ser., 2019, 1198(4), 042016.
https://doi.org/10.1088/1742-6596/1198/4/042016
 
18. Saleem, W., Zain­ul­abdein, M., Ijaz, H., Mahfouz, A. S. B., Ahmed, A., Asad, M., and Mabrouki, T. Computational analysis and artificial neural network optimization of dry turning parameters - AA2024­T351. Appl. Sci., 2017, 7(6), 642.
https://doi.org/10.3390/app7060642
 
19. Boukezzi, F., Noureddine, R., Benamar, A., and Noureddine, F. Modelling, prediction and analysis of surface roughness in turning process with carbide tool when cutting steel C38 using artificial neural network. Int. J. Ind. Syst. Eng., 2017, 26(4), 567-583.
https://doi.org/10.1504/IJISE.2017.085227
 
20. Haykin, S. Neural Networks: A Comprehensive Foundation, Second ed. Prentice Hall, New Jersey, 1999.

 


Back to Issue