eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Synchronizing physical factory and its digital twin through an IIoT middleware: a case study; pp. 364–370

Vladimir Kuts, Gianfranco Modoni, Tauno Otto, Marco Sacco, Toivo Tähemaa, Yevhen Bondarenko, Ruxin Wang

Digital twin (DT) is the virtual clone of a factory representing its static and dynamic aspects (e.g., processes, systems, products, etc.) in detail. Among the significant challenges that manufacturing company has to face to implement the DT, one of the most demanding is applying an appropriate software infrastructure, which would enable synchronization of the physical factory with its DT. In this case, it was possible to exploit wide range of capabilities of DT in its full potential. In particular, the DT was used in different conditions to enable various operations within the shop floor, to simulate and assess the factory’s performance. To support companies in addressing this challenge, this paper presents a potential solution, based on the Industrial Internet of Things (IIoT) middleware, that implements a fully dual-way synchronization between the real and virtual worlds.
A case study was carried out to investigate the possibilities to implement the solution. To demonstrate correctness and validity of the approach, tests were carried out in the laboratories of Flexible Manufacturing Systems, Robotics Demo Centre and ProtoLab of Tallinn University of Technology (TalTech).


    1.  Modoni, G. E., Caldarola, E. G., Sacco, M., and Terkaj, W. Synchronizing physical and digital factory: benefits and technical challenges. Procedia CIRP, 2019, 79, 472–477.

    2.  Schluse, M. and Rossmann, J. From simulation to experimentable digital twins: Simulation-based develop­ment and operation of complex technical systems. In Proceedings of 2016 IEEE International Symposium on Systems Engineering (ISSE), Edinburgh, UK, October 3–5, 2016. document/7753162

    3.  Grinshpun, G., Cichon, T., Dipika, D., and Rossmann, J. From Virtual Testbeds to Real Lightweight Robots: Development and deployment of control algorithms for soft robots, with particular reference to. In Proceedings of ISR 2016: 47st International Symposium on Robotics, Munich, Germany, June 21–22, 2016. https: //

    4.  Schroeder, G. N., Steinmetz, C., Pereira, C. E., and Espindola, D. B. Digital Twin Data Modeling with AutomationML and a Communication Methodology for Data Exchange. IFAC-PapersOnLine, 2016, 49(30), 12–17.

    5.  FIWARE.

    6.  Modoni, G. E., Sacco, M., and Terkaj, W. A Telemetry-driven approach to simulate data-intensive manu­facturing processes. Procedia CIRP, 57, 281‒285.

    7.  Kuts, V., Modoni, G. E., Terkaj, W., Tähemaa, T., Sacco, M., and Otto, T. Exploiting factory telemetry to support Virtual Reality simulation in robotics cell. In Augmented Reality, Virtual Reality, and Computer Graphics. Proceedings of the 4th International Conference, AVR 2017, Part 1, Ugento, Italy, June 12‒15, 2017 (De Paolis, L. T., Bourdot, P., and Mongelli, A., eds). Springer International Publishing, 2017, 212−221.

    8.  Kuts, V., Sarkans, M., Otto, T., and Tähemaa, T. Col­laborative work between human and industrial robot in manufacturing by advanced safety monitoring system. In Proceedings of the 28th International DAAAM Symposium Intelligent Manufacturing and Automation, Zadar, Croatia, November 08–11, 2017 (Katalinic, B. ed.). DAAAM International, Vienna, Austria, 2017, 0996−1001.

    9.  Kuts, V., Otto, T., Tähemaa, T., and Bondarenko, Y. Digital Twin based synchronised control and simulation of the industrial robotic cell using Virtual Reality. J. Mach. Eng., 2019, 19(1), 128–145.

 10.  Kuts, V., Otto, T., Tähemaa, T., Bukhari, K., and Pataraia, T. Adaptive industrial robots using machine vision. In Proceedings of the ASME 2018 Inter­national Mechanical Engineering Congress and Exposition, Pittsburgh, Pennsylvania, USA, November 9–15, 2018. (accessed 2019-01-15).

 11.  Ji, W., Yin, S., and Wang, L. A Virtual training based programming-free automatic assembly approach for future Industry. IEEE Access, 2018, 6, 43865–43873.

 12.  Sell, R. Remote laboratory portal for robotic and embedded system experiments. Int. J. Online Eng., 2013, 9(8), 23–26.

 13.  Sell, R., Coatanéa, E., and Christophe, F. Important aspects of early design in mechatronic. In Pro­ceedings of the 6th International DAAAM Baltic Conference INDUSTRIAL ENGINEERING, Tallinn, Estonia, April 24–26, 2008 (Küttner, R., ed.). http: //

 14.  Modoni, G. E., Veniero, M., Trombetta, A., Sacco, M., and Clemente, S. Semantic based events signaling for AAL systems. J. Ambient Intell. Hum. Comput., 2018, 9(5), 1311–1325.

 15.  ISO/IEC 20922:2016 Information Technology – Message Queuing Telemetry Transport (MQTT) v3.1.1. https: //

 16.  Apache Kafka at GitHub. (accessed 2018-12-12).

 17.  Digital Ocean cloud hosting platform. https: // products/spaces/ (accessed 2018-12-17).

 18.  Eclipse Paho MQTT library for .NET at GitHub. https: // (accessed 2018-12-16).

 19.  M2MqttUnity at GitHub. M2MqttUnity (accessed 2018-12-16).

 20.  Modoni, G. E., Doukas, M., Terkaj, W., Sacco, M., and Mourtzis, D. Enhancing factory data integration through the development of an ontology: from the reference models reuse to the semantic conversion of the legacy models. Int. J. Comput. Integr. Manuf., 2017, 30(10), 1043–1059.

Back to Issue