eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Wear of potential tool materials for aluminium alloys friction stir welding at weld temperatures; pp. 198-206

Mart Kolnes, Jakob Kübarsepp, Fjodor Sergejev, Märt Kolnes

Friction stir welding is a solid-state joining process that uses a non-consumable tool to join materials by mixing them mechanically in the weld area instead of melting them. The high-quality friction stir welding (FSW) process temperatures are in the range of 400–500 °C. Adhesive wear is suggested to be the main wear mechanism for the FSW tool. Adhesive wear testing should be performed at the weld temperature or close to the welding process temperatures for better simulation of real-life FSW tool wearing conditions. Adhesive wear tests of three FSW tool materials, WC–Co and TiC based with NiMo and FeCr binders at temperatures of 70 °C (low) and 400 °C (high) were performed by turning aluminium alloy AW6082-T6. The higher temperature in the cutting zone was achieved by increasing the cutting speed. To measure the temperature at the interface of the cutting tool and the workpiece, a novel method based on the thermoelectric effect was used. The wear was determined as the change of the geometry of the cutting edges of the tool. Microscopic investigations were performed by using scanning electron microscopy. The distribution of chemical elements and the chemical composition of the tool cutting edge were analysed by energy dispersive X-ray spectroscopy. The TiC-based cermets (TiC–NiMo and TiC–FeCr) demonstrated superiority over WC–Co cemented carbide at both low (70 °C) and high (400 °C) temperatures. The highest wear performance at the low temperature was shown by the Fe-alloy bonded composite TiC–FeCr while at the high temperature the Ni-alloy bonded cermet TiC–NiMo had the highest wear performance.



   1.  Murr, L. E., Liu, G., and McClure, C. A TEM study of precipitation and related microstructures in friction-stir-welded 6061 aluminium. J. Mater. Sci., 1998, 33, 1243–1251.

   2.  Threadgrill, P. L., Leonard, A. J., Shercliff, H. R., and Withers, P. J. Friction stir welding of aluminium alloys. Int. Mater. Rev., 2009, 54, 49–93.

   3.  Schneider, J. A. Temperature distribution and resulting metal flow. In Friction Stir Welding and Processing (Misha, R. S. II and Mahoney, M. W., eds). ASM International, Materials Park, Ohio, 2007, 37–49.

   4.  Fuller, C. B. Friction stir tooling: tool materials and designs. In Friction Stir Welding and Processing (Misha, R. S. II and Mahoney, M. W., eds). ASM International, Materials Park, Ohio, 2007, 7–35.

   5.  Pirso, J., Juhani, K., Viljus, M., and Letunovitš, S. Two-body abrasive wear of WC-Co hardmetals in wet and dry environments. In Proceedings of the 8th International Conference of DAAAM Baltic Industrial Engineering, 2012, 711–716.

   6.  Pirso, J., Viljus, M., Letunovitš, S., Juhani, K., and Joost, R. Three-body abrasive wear of cermets. Wear, 2011, 271, 2868–2878.

   7.  Kolnes, M., Kübarsepp, J., Sergejev, F., and Kolnes, M. Adhesive wear of WC- and TiC-based friction stir welding tool materials for aluminium alloy welding. In Proceedings Euro PM2018. EPMA, Pilbao, 2018.

   8.  Paerson, S. R., Shipway, P. H., Abere, J. O., and Hewitt, R. A. A. The effect of temperature on wear and friction of a high strength steel in fretting. Wear, 2013, 303, 622–631.

   9.  Gåård, A., Hallbäck, N., Krakhmalev, P., and Bergström, J. Temperature effects on adhesive wear in dry sliding contacts. Wear, 2009, 268, 968–975.

10.  Tang, W., Guo, X., McClure, J. C., and Murr, L. E. Heat input and temperature distribution in friction stir welding. J. Mater. Process. Manuf. Sci., 1998, 7, 163–172.

11.  Tarasov, S., Rubtsov, V. E., and Kolubaev, E. A. A proposed diffusion-controlled wear mechanism of alloy steel friction stir welding (FSW) tools used on an aluminum alloy. Wear, 2014, 318, 130–134.

12.  Alimadadi, H., Kjartansdottir, C., Burrows, A., Kasama, T., and Møller, P. Nickel-aluminum diffusion: a study of evolution of microstructure and phase. Mater. Charact., 2017, 130, 105–112.

13.  Hirano, K. L., Agarwala, R. P., and Cohen, M. Diffusion of iron, nickel and cobalt in aluminum. Acta Metall., 1962, 10, 857–863.

14.  Recktenwald, G. Conversion of Thermocouple Voltage to Temperature. Apostila, Portland, 2010.

15. De Backer, J. and Bolmsjö, G. Thermoelectric method for temperature measurement in friction stir welding. Sci. Technol. Weld. Join., 2013, 18:7, 558–565.

16.  Santos, M. C. Jr., Araujo Filho, J. S., Barrozo, M. A. S., Jackson, M. J., and Macchado, A. R. Development and application of temperature measurement device using the tool-workpiece thermocouple method in turning at high cutting speeds. Int. J. Adv. Manuf. Technol., 2017, 89, 2287–2298.

17.  Kübarsepp, J., Klaasen, H., and Pirso, J. Behaviour of TiC-base cermets in different wear conditions. Wear, 2001, 249, 229–234.

18.  Klaasen, H. and Kübarsepp, J. Abrasive wear per­formance of carbide composites. Wear, 2006, 261, 520–526.

19.  Klaasen, H., Kübarsepp, J., Roosaar, T., Viljus, M., and Traksmaa, R. Adhesive wear performance of hard­metals and cermets. Wear, 2010, 268, 1122–1128.

20.  Kolnes, M., Mere, A., Kübarsepp, J., Viljus, M., Maaten, M., and Tarraste, M. Microstructure evolution of TiC cermets with ferritic AISI 430L steel binder. Powder Metall., 2018, 61(3), 197–209.

Back to Issue