eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Spark plasma sintering of layered γ-Al2O3/graphene reinforced nanocomposites; pp. 140–144

Ali Saffar Shamshirgar, Roman Ivanov, Irina Hussainova

Multi-layered ceramic composites with alternation of grain sizes in layers were produced by adding thin interlayers of graphene-augmented alumina nanofibres (GAIN) between layers of monolithic α-Al2O3. The composite was mounted layer by layer directly in the graphite mould, using a vacuum filter system to precipitate alumina nanopowder and GAIN layers from the corresponding suspensions. The 30-mm diameter samples were consolidated by the spark plasma sintering technology at 1450 °C in nitrogen atmosphere at 50 MPa pressure. The effect of interlayers on the microstructure of alumina and on the thermal and electrical conductivity of the compact is studied.


   1. Ahmad, I., Yazdani, B., and Zhu, Y. Recent advances on carbon nanotubes and graphene reinforced ceramics nanocomposites. Nanomaterials, 2015, 5(1), 90–114.

   2.  Nieto, A., Huang, L., Han, Y-H., and Schoenung, J. M. Sintering behavior of spark plasma sintered alumina with graphene nanoplatelet reinforcement. Ceram. Int., 2015, 41(4), 5926–5936.

   3.  Wang, K., Wang, Y., Fan, Z., Yan, J., and Wei, T. Preparation of graphene nanosheet/alumina composites by spark plasma sintering. Mater. Res. Bull., 2011, 46(2), 315–318.

   4.  Ramírez, C., Vega-Diaz, S. M., Morelos-Gómez, A., Figueiredo, F. M., Terrones, M., Osendi, M. I., et al. Synthesis of conducting graphene/Si3N4composites by spark plasma sintering. Carbon N Y, 2013, 57, 425–432.

   5.  Drozdova, M., Hussainova, I., Pérez-Coll, D., Aghayan, M., Ivanov, R., and Rodríguez, M. A. A novel approach to electroconductive ceramics filled by graphene covered nanofibers. Mater. Des., 2016, 90, 291–298.

   6.  Mussler, B., Swain, M. V., and Claussen, N. Dependence of fracture toughness of alumina on grain size and test technique. J. Am. Ceram. Soc., 1982, 65(11), 566–572.

   7.  Yao, W., Liu, J., Holland, T. B., Huang, L., Xiong, Y., Schoenung, J. M., et al. Grain size dependence of fracture toughness for fine grained alumina. Scr. Mater., 2011, 65(2), 143–146.

   8.  Belmonte, M., Nistal, A., Cruz-Silva, R., Morelos-Gómez, A., Terrones, M., Miranzo, P., et al. Directional electrical transport in tough multifunctional layered ceramic/graphene composites. Adv. Electron. Mater., 2015, 1(9), 1–7.

   9.  Ivanov, R., Hussainova, I., Aghayan, M., Drozdova, M., Pérez-Coll, D., Rodríguez, M. A., et al. Graphene-encapsulated aluminium oxide nanofibers as a novel type of nanofillers for electroconductive ceramics. J. Eur. Ceram. Soc., 2015, 35(14), 4017–4021.

10.  Ivanov, R., Mikli, V., Kübarsepp, J., and Hussainova, I. Direct CVD growth of multi-layered graphene closed shells around alumina nanofibers. Key Eng. Mater., 2016, 674, 77–80.

11.  Baloch, K. H., Voskanian, N., Bronsgeest, M., and Cumings, J. Remote Joule heating by a carbon nanotube. Nat. Nanotechnol., 2012, 7(5), 316–319.

12.  Ghosh, S., Chokshi, A. H., Lee, P., and Raj, R. A huge effect of weak dc electrical fields on grain growth in zirconia. J. Am. Ceram. Soc., 2009, 92(8), 1856–1859.

13.  Raj, R., Cologna, M., and Francis, J. S. C. Influence of externally imposed and internally generated electrical fields on grain growth, diffusional creep, sintering and related phenomena in ceramics. J. Am. Ceram. Soc., 2011, 94(7), 1941–1965.

14.  Kim, P., Shi, L., Majumdar, A., and McEuen, P. L. Thermal transport measurements of individual multiwalled nanotubes. Phys. Rev. Lett., 2001, 87(21), 215502-1–215502-4.

15.  Berber, S., Kwon, Y-K., and Tománek, D. Unusually high thermal conductivity of carbon nanotubes. Phys. Rev. Lett., 2000, 84(20), 4613–4616.

16.  Ferrari, A. C. and Basko, D. M. Raman spectroscopy as a versatile tool for studying the properties of graphene. Nat. Nanotechnol., 2013, 8(4), 235–246.

Back to Issue