ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Integrated impact of sulphur and nitrogen deposition and ozone on forest ecosystems in Lithuania, 1995–2015; pp. 315–324

Full article in PDF format | https://doi.org/10.3176/proc.2018.4.03

Authors
Steigvilė Byčenkienė, Kristina Plauškaitė, Ingrida Augustaitienė, Algirdas Augustaitis, Manuela Baumgarten, Raselė Girgždienė, Dalia Jasinevičienė, Almantas Kliučius, Vitas Marozas, Rainer Matyssek, Gintautas Mozgeris, Gintaras Pivoras, Vidmantas Ulevicius

Abstract

The present study considers temporal variability in concentrations of the throughfall fluxes and bulk fluxes of sulphate, nitrate, and ammonium in precipitation in Lithuania evaluated employing a non-parametric Mann-Kendall test along with Sen’s slope estimator during the period 1995–2015. Decreased air concentrations of sulphur species and ammonium as well as their deposition were the main drivers of the reduction of mean defoliation of Scots pine trees in Lithuania. Their effect on Norway spruce crown defoliation was less expressed, but no effect of acidifying species and surface ozone was detected on birch tree crown defoliation. The established relationships revealed that a deterioration of the health of coniferous tree species, first of all Scots pine, could be expected only in forest where the deposition of the acidifying species exceeded the critical loads.


References

Augustaitis, A., Augustaitienė, I., Kliučius, A., Girgždienė, R., and Šopauskienė, D. 2007. Contribution of ambient ozone to changes in Scots pine defoliation. Step II of Lithuanian studies. Sci. World J., 7, 47–57.
https://doi.org/10.1100/tsw.2007.54

Augustaitis, A., Augustaitienė, I., Baugarten, M., Bičenkienė, S., Girgždienė, R., Kulbokas, G., et al. 2018. Tree-ring formation as an indicator of forest capacity to adapt to the main threats of environmental changes in Lithuania. Sci. Total Environ., 615, 1247‒1261.
https://doi.org/10.1016/j.scitotenv.2017.09.169

Baldocchi, D., Wilson, K. B., and Gu, L. 2002. How the environment, canopy structure and canopy physiological functioning influence carbon, water and energy fluxes of a temperate broad-leaved deciduous forest – an assessment with the biophysical model CANOAK. Tree Physiol., 22, 1065–1077.
https://doi.org/10.1093/treephys/22.15-16.1065

Bari, M. A., Kindzierski, W. B., and Spink, D. 2016. Twelve-year trends in ambient concentrations of volatile organic compounds in a community of the Alberta oil sands region, Canada. Environ. Int., 91, 40‒50.
https://doi.org/10.1016/j.envint.2016.02.015

Cruz, A. C. de la, Gil, P. M., Fernández-Cancio, Á., Minaya, M., Navarro-Cerrillo, R. M., Sánchez-Salguero, R., and Grau, J. M. 2014. Defoliation triggered by climate induced effects in Spanish ICP Forests monitoring plots. Forest Ecol. Manag., 331, 245‒255.
https://doi.org/10.1016/j.foreco.2014.08.010

Dornelas, M., Gotelli, N. J., McGill, B., Shimadzu, H., Moyes, F., Sievers, C., and Magurran, A. E. 2014. Assemblage time series reveal biodiversity change but not systematic loss. Science, 344, 296‒299.
https://doi.org/10.1126/science.1248484

Ferretti, M., Marchetto, A., Arisci, S., Bussotti, F., Calderisi, M., Carnicelli, S., et al. 2014. On the tracks of nitrogen deposition effects on temperate forests at their southern European range – an observational study from Italy. Global Change Biol., 20, 3423‒3438.
https://doi.org/10.1111/gcb.12552

Girgždienė, R., Serafinavičiūtė, B., Stakėnas, V., and Byčenkienė, S. 2009. Ambient ozone concentration and its impact on forest vegetation in Lithuania. Ambio, 38(8), 432‒436.
https://doi.org/10.1579/0044-7447-38.8.432

Juknys, R., Augustaitis, A., Venclovienė, J., Kliučius, A., Adomas, V., Bartkevičius, E., and Jurkonis, N. 2014. Dynamic response of tree growth to changing environ­mental pollution. Eur. J. Forest Res., 133, 713‒724.
https://doi.org/10.1007/s10342-013-0712-3

Kumar, P., Morawska, L., Birmili, W., Paasonen, P., Hu, M., Kulmala, M., et al. 2014. Ultrafine particles in cities. Environ. Int., 66, 1–10.
https://doi.org/10.1016/j.envint.2014.01.013

Loehle, C., Idso, C., and Wigley, T. B. 2016. Physiological and ecological factors influencing recent trends in United States forest health responses to climate change. Forest Ecol. Manag., 363, 179‒189.
https://doi.org/10.1016/j.foreco.2015.12.042

Lorenz, M. and Mues, V. 2007. Forest health status in Europe. Sci. World J., 7(S1), 22‒27.
https://doi.org/10.1100/tsw.2007.17

LRTAP Convention. 2018. National emission inventories. http://www.ceip.at/ (accessed 2018–06–20).

Matyssek, R. and Innes, J. L. 1999. Ozone – a risk factor for trees and forests in Europe? Water Air Soil Pollut., 116, 199‒226.
https://doi.org/10.1023/A:1005267214560

Matyssek, R., Kozovits, A. R., and Wieser, G. 2015. Vegetation response to climate change and air pollution – unifying research and evidence from Northern and Southern Hemisphere. Environ. Pollut., 196, 480‒482.
https://doi.org/10.1016/j.envpol.2014.09.003

Nevalainen, S., Lindgren, M., Pouttu, A., Heinonen, J., Hongisto, M., and Neuvonen, S. 2010. Extensive tree health monitoring networks are useful in revealing the impacts of widespread biotic damage in boreal forests. Environ. Model. Assess., 168, 159‒171.
https://doi.org/10.1007/s10661-009-1100-9

Paoletti, E., De Marco, A., Beddows, D. C. S., Harrison, R. M., and Manning, W. J. 2014. Ozone levels in European and USA cities are increasing more than at rural sites, while peak values are decreasing. Environ. Pollut., 192, 295‒299.
https://doi.org/10.1016/j.envpol.2014.04.040

Pollastrini, M., Feducci, M., Bonal, D., Fotelli, M., Gessler, A., Grossiord, C., et al. 2016. Physiological significance of forest tree defoliation: results from a survey in a mixed forest in Tuscany (Central Italy). Forest Ecol. Manag., 361, 170‒178.
https://doi.org/10.1016/j.foreco.2015.11.018

Reis, S., Grennfelt, P., Klimont, Z., Amann, M., ApSimon, H., Hettelingh, J. P., et al. 2012. From acid rain to climate change. Science, 338, 1153‒1154.
https://doi.org/10.1126/science.1226514

Rizzetto, S., Belyazid, S., Gégout, J. C., Nicolas, M., Alard, D., Corcket, E., et al. 2016. Modelling the impact of climate change and atmospheric N deposition on French forests biodiversity. Environ. Pollut., 213, 1016‒1027.
https://doi.org/10.1016/j.envpol.2015.12.048

Sen, P. K. 1968. Estimates of the regression coefficient based on Kendall’s tau. J. Am. Stat. Assoc., 63, 1379‒1389.
https://doi.org/10.1080/01621459.1968.10480934

Sicard, P., Serra, R., and Rossello, P. H. 2016. Spatiotemporal trends in ground-level ozone concentrations and metrics in France over the time period 1999–2012. Environ. Res., 149, 122‒144.
https://doi.org/10.1016/j.envres.2016.05.014

UNECE ICP FORESTS. 2016. 30 YEARS of monitoring the effects of long-range transboundary air pollution on forests in Europe and beyond. (http://www.icp-forests.org/pdf/30_Years_Anniversary_Report.pdf) (accessed 2017–04–12).

Utrainen, J. and Holopainen, T. 2000. Impact of increased springtime O3 exposure on Scots pine (Pinus sylvestris) seedlings in central Finland. Environ. Pollut., 109, 479–487.
https://doi.org/10.1016/S0269-7491(00)00051-8


Back to Issue