eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Comparison of prominent methods for computational studies of lanthanoid cation complexation; pp. 106–113

Liisa Luhaste, Kaido Tämm, Lauri Sikk, Anni Pupart, Eve Toomsalu, Peeter Burk

We compared different computational methods (quantum chemical and DFT) for calculations of binding energies of  8- and 9-coordinated lanthanoid–aqua complexes. We used nine computational methods and compared the results with those obtained by the CCSD(T) method. All the nine methods provided relatively similar results and calculated energies correlated very well with the CCSD(T) obtained energies for complexes of this type. The comparison of basis sets revealed that combination of Dolg’s (5s5p4d)/[4s4p3d] + 2s1p1d basis set for lanthanoids and the cc-pvdz basis set for non-lanthanoids can be suggested as optimal for further studies of lanthanoids cation complexation.


   1.  Di Bernardo, P., Melchior, A., Tolazzi, M., and Zanonato, P. L. Thermodynamics of lanthanide(III) complexation in non-aqueous solvents. Coord. Chem. Rev., 2012, 256, 328–351.

   2.  Dutra, J. D. L., Gimenez, I. F., da Costa, N. B., Jr., and Freire, R. O. Theoretical design of highly luminescent europium (III) complexes: a factorial study. J. Photoch. Photobio. A, 2011, 217, 389–394.

   3.  Rard, J. A. Chemistry and thermodynamics of europium and some of its simpler inorganic compounds and aqueous species. Chem. Rev., 1985, 85, 555–582.

   4.  Zeimentz, P. M., Arndt, S., Elvidge, B. R., and Okuda, J. Cationic organometallic complexes of scandium, yttrium, and the lanthanoids. Chem. Rev., 2006, 106, 2404–2433.

   5.  Binnemans, K. Lanthanide-based luminescent hybrid materials. Chem. Rev., 2009, 109, 4283–4374.

   6.  D'Angelo, P. and Spezia, R. Hydration of lanthanoids(III) and actinoids(III): an experimental/theoretical saga. Chem. Eur. J., 2012, 18, 11162–11178.

   7.  Ricca, A. and Bauschlicher, C. W., Jr. Ab initio study of Eu3+–L (L = H2O, H2S, NH2CH3, S(CH3)2, imidazole) complexes. Chem. Phys. Lett., 2002, 366, 623–627.

   8.  Freire, R. O., Rocha, G. B., Albuquerque, R. Q., and Simas, A. M. Efficacy of the semiempirical sparkle model as compared to ECP ab-initio calculations for the prediction of ligand field parameters of europium(III) complexes. J. Lumin., 2005, 111, 81–87.

   9.  Freire, R. O., Mesquita, M. E., dos Santos, M. A. C., and da Costa, N. B., Jr. Sparkle model and photophysical studies of Europium BiqO2-cryptate. Chem. Phys. Lett., 2007, 442, 488–491.

 10. Dolg, M., Stoll, H., Savin, A., and Preuss, H. Energy-adjusted pseudopotentials for the rare earth elements. Theor. Chim. Acta, 1989, 75, 173–194.

11.  Albuquerque, R. Q., Da Costa, N. B., and Freire, R. O. Design of new highly luminescent Tb3+ complexes using theoretical combinatorial chemistry. J. Lumin., 2011, 131, 2487–2491.

12.  Rawat, N., Bhattacharyya, A., Tomar, B. S., Ghanty, T. K., and Manchanda, V. K. Thermodynamics of U(VI) and Eu(III) complexation by unsaturated carboxylates. Thermochim. Acta, 2011, 518, 111–118.

13.  Terrier, C., Vitorge, P., Gaigeot, M.-P., Spezia, R., and Vuilleumier, R. Density functional theory based molecular dynamics study of hydration and electronic properties of aqueous La3+. J. Chem. Phys., 2010, 133, 044509-10.

14.  Zhang, J., Heinz, N., and Dolg, M. Understanding lanthanoid(III) hydration structure and kinetics by insights from energies and wave functions. Inorg. Chem., 2014, 53, 7700–7708.

15.  Grimme, S. Improved second-order Møller–Plesset perturbation theory by separate scaling of parallel- and antiparallel-spin pair correlation energies. J. Chem. Phys., 2003, 118, 9095–9102.

16.  Purvis, G. D. and Bartlett, R. J. A full coupled-cluster singles and doubles model – the inclusion of dis­connected triples. J. Chem. Phys., 1982, 76, 1910–1918.

17.  Neese, F. The ORCA program system. WIREs Comput. Mol. Sci., 2012, 2, 73–78.

18.  Raghavachari, K., Trucks, G. W., Pople, J. A., and Headgordon, M. A fifth-order perturbation comparison of electron correlation theories. Chem. Phys. Lett., 1989, 157, 479–483.

19.  Becke, A. D. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, 1988, 38, 3098–3100.

20.  Perdew, J. P. Density-functional approximation for the correlation energy of the inhomogeneous electron gas. Phys. Rev. B, 1986, 33, 8822–8824.

21.  Grimme, S., Antony, J., Ehrlich, S., and Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys., 2010, 132, 154104–154119.

22.  Lee, C. T., Yang, W. T., and Parr, R. G. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B, 1988, 37, 785–789.

23.  Stephens, P. J., Devlin, F. J., Chabalowski, C. F., and Frisch, M. J. Ab initio calculation of vibrational absorption and circular dichroism spectra using density functional force fields. J. Phys. Chem., 1994, 98, 11623–11627.

24.  Perdew, J. P., Burke, K., and Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett., 1996, 77, 3865–3868.

25.  Perdew, J P., Emzerhof, M., and Burke, K. Rationale for mixing exact exchange with density functional approxi­mations. J. Chem. Phys., 1996, 105, 9982–9985.

26.  Adamo, C. and Barone, V. Toward reliable density functional methods without adjustable parameters: the PBE0 model. J. Chem. Phys., 1999, 110, 6158–6170.

27.  Tao, J. M., Perdew, J. P., Staroverov, V. N., and Scuseria, G. E. Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys. Rev. Lett., 2003, 91, 146401–146404.

28.  Headgordon, M., Pople, J. A., and Frisch, M. J. MP2 energy evaluation by direct methods. Chem. Phys. Lett., 1988, 153(6), 503–506.

29.  Møller, C. and Plesset, M. S. Note on an approximation treatment for many-electron systems. Phys. Rev., 1934, 46, 618–622.

30.  Dolg, M., Stoll, H., and Preuss, H. Energy-adjusted ab initio pseudopotentials for the rare earth elements. J. Chem. Phys., 1989, 90, 1730–1734.

31.  Cao, X. Y. and Dolg, M. Segmented contraction scheme for small-core lanthanide pseudopotential basis sets. J. Mol. Struct. THEOCHEM, 2002, 581, 139–147.

32.  Schaefer, A., Horn, H., and Ahlrichs, R. Fully optimized contracted Gaussian basis sets for atoms Li to Kr. J. Chem. Phys., 1992, 97, 2571–2577.

33.  Dolg, M., Stoll, H., and Preuss, H. A combination of quasirelativistic pseudopotential and ligand field calculations for lanthanoid compounds. Theor. Chim. Acta, 1993, 85, 441–450.

34.  Yang, J. and Dolg, M. Valence basis sets for lanthanide 4f-in-core pseudopotentials adapted for crystal orbital ab initio calculations. Theor. Chem. Acc., 2005, 113, 212–224.

35.  Weigand, A., Cao, X. Y., Yang, J., and Dolg, M. Quasirelativistic f-in-core pseudopotentials and core-polarization potentials for trivalent actinides and lanthanides: molecular test for trifluorides. Theor. Chem. Acc., 2010, 126, 117–127.

36.  Dunning, T. H., Jr. Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem.Phys., 1989, 90, 1007–1023.

37.  Kendall, R. A., Dunning, T. H., Jr., and Harrison, R. J. Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys., 1992, 96, 6796–6806.

Back to Issue