eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Tensor series expansion of a spherical function for the use in constitutive theory of materials containing orientable particles; pp 73-92

Heiko Herrmann, Miriam Beddig

This paper presents a didactical introduction to a tensor series expansion of a spherical function for the use in constitutive theory of materials containing orientable particles. In several application areas a function of two angles, e.g. an orientation (density) distribution function, is expanded into a series of symmetric irreducible tensors. This paper will explain this series expansion, starting with reviewing the representation of a function defined on a unit sphere in terms of spherical harmonics, which are a possible choice for a basis. Then, the connection between spherical harmonics and symmetric traceless tensors is explained. This is the basis for introducing and understanding orientation and alignment tensors as well as their connection to the orientation distribution function. The style of presentation was chosen to be more on the didactical side, differently from the theorem–proof style found elsewhere, which directly starts from symmetric tensors.


1. Waldmann, L. Kinetische Theorie des Lorentz-Gases aus rotierenden Molekülen. Z. Naturforsch. A, 1963, 18a, 1033–1048.

2. Hess, S. Irreversible thermodynamics of nonequilibrium alignment phenomena in molecular liquids and in liquid crystals (1). Z. Naturforsch. A, 1975, 30a, 728–738.
3. Reinitzer, F. Beiträge zur Kenntniss des Cholesterins. Monatsh. Chem., 1888, 9(1), 421–441. 10.1007/BF01516710. (accessed 2017-10-29).

4. Hess, S. Fokker–Planck-equation approach to flow alignment in liquid crystals. Z. Naturforsch. A, 1976, 31a, 1034–1037.

5. Pardowitz, I. and Hess, S. On the theory of irreversible processes in molecular liquids and liquid crystals, nonequilibrium phenomena associated with the second and fourth rank alignment tensors. Physica A, 1980, 100(3), 540–562.

6. Steuer, H. Thermodynamical Properties of a Model Liquid Crystal. TU Berlin; 2004. (accessed 2017-10-29).

7. Advani, S. G. and Tucker, C. L. III. The use of tensors to describe and predict fiber orientation in short fiber composites. J. Rheol., 1987, 31(8), 751–784.

8. Herrmann, H. and Eik, M. Some comments on the theory of short fibre reinforced material. Proc. Estonian Acad. Sci., 2011, 60, 179–183.

9. Herrmann, H., Eik, M., Berg, V., and Puttonen, J. Phenomenological and numerical modelling of short fibre reinforced cementitious composites. Meccanica, 2014, 49, 1985–2000.

10. Herrmann, H. An improved constitutive model for short fibre reinforced cementitious composites (SFRC) based on the orientation tensor. In Generalized Continua as Models for Classical and Advanced Materials (Altenbach, H. and Forest, S., eds). Springer, 2016, 213–227.

11. Herrmann, H., Pastorelli, E., Kallonen, A., and Suuronen, J. P. Methods for fibre orientation analysis of X-ray tomography images of steel fibre reinforced concrete (SFRC). J. Mater. Sci., 2016, 51, 3772–3783.

12. Eik, M., Puttonen, J., and Herrmann, H. The effect of approximation accuracy of the orientation distribution function on the elastic properties of short fibre reinforced composites. Compos. Struct., 2016, 48, 12–18.

13. Zollo, R. F. Fiber-reinforced concrete: an overview after 30 years of development. Cement Concrete Compos., 1997, 19(2), 107–122. (accessed 2017-10-29).

14. Vicente, M. A., González, D. C., andMínguez, J. Determination of dominant fibre orientations in fibre-reinforced high-strength concrete elements based on computed tomography scans. Nondestruct. Test. Eval., 2014, 29, 164–182.

15. Altenbach, H., Naumenko, K., L'vov, G. I., and Pilipenko, S. N. Numerical estimation of the elastic properties of thin-walled structures manufactured from short-fiber-reinforced thermoplastics. Mech. Compos. Mater., 2003, 39, 221–234.

16. Tejchman, J. and Kozicki, J. Experimental and Theoretical Investigations of Steel-Fibrous Concrete. 1st ed. Springer Series in Geomechanics and Geoengineering. Springer, 2010.

17. Laranjeira de Oliveira, F. Design-oriented Constitutive Model for Steel Fiber Reinforced Concrete. Universitat Politècnica de Catalunya, 2010. (accessed 2017-10-29).

18. Bronstein, I. N., Semendjajew, K. A., Musiol, G., and Muehlig, H. Handbook of Mathematics. 5th ed. Springer, 2007.

19. Hess, S. and Köhler, W. Formeln zur Tensor-Rechnung. Palm and Enke, Erlangen, 1980.

20. Ehrentraut, H. and Muschik, W. On symmetric irreducible tensors in d-dimensions. ARI - Int. J. Phys. Eng. Sci., 1998, 51(2), 149–159. (accessed 2017-10-29).

21. Hess, S. Tensors for Physics. Springer, 2015.

22. Hunter, J. and Nachtergaele, B. Applied Analysis. World Scientific, 2000.

applied_analysis.pdf (accessed 2017-10-29).

23. Battaglia, F. and George, T. F. Tensors: a guide for undergraduate students. Am. J. Phys., 2013, 81(7), 498–51. (accessed 2017-10-29).

24. Jankun-Kelly, T. J. and Mehta, K. Superellipsoid-based, real symmetric traceless tensor glyphs motivated by nematic liquid crystal alignment visualization. IEEE T. Vis. Comput. Gr. (Proc. Vis./Inf. Vis. 2006), 2006, 12, 1197–1204.

25. Sun, K., Lu, L., and Jiang, Y. Analysis of orientation and tensor properties of airborne fibrous particle flow. Int. J. Numer. Method. H., 2014, 24, 1795–1802.

Back to Issue