eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Newton observer for a nonlinear flux-controlled AMB system; pp. 61-72

Arkadiusz Mystkowski, Ülle Kotta ORCID Icon, Vadim Kaparin ORCID Icon

The paper focuses on the adaptation of the Newton observer for the estimation of the magnetic flux in the feedback control of a nonlinear active magnetic bearing (AMB) system. The Newton observer is constructed for the exact discrete-time model of the AMB system and is presented in a detailed and simple algorithm ready for implementation. The observer is combined with three controllers, and the effectiveness of the observer-based control scheme is verified via numerical simulations.



1. Arcak, M. and Kokotović, P. Observer-based control of systems with slope-restricted nonlinearities. IEEE Trans. Autom.Control, 2001, 46, 1146–1150.

2. Baloh, M., Tao, G., and Allaire, P. Modeling and control of a magnetic bearing actuated beam. In Proceedings of the 2000 American Control Conference, Chicago, IL, USA (Zhu, J., ed.), Vol. 3. IEEE, 2000, 1602–1606.

3. Baranowski, J. and Tutaj, A. Continuous state estimation in water tank system. In Computer Methods and Systems, VI Konferencja Metody i Systemy Komputerowe, Kraków, Poland (Tadeusiewicz, R., Ligeza, A., and Szymkat, M., eds). ONT, 2007, 373–378.

 4. Bıyık, E. and Arcak, M. A hybrid redesign of Newton observers in the absence of an exact discrete-time model. Syst. Control.Lett., 2006, 55, 429–436.

 5. Chen, S.-L. and Hsiao, Y.-H. Nonlinear high-gain observer for a three-pole active magnetic bearing system. In The 8th Asian Control Conference, Kaohsiung, Taiwan. IEEE, 2011, 155–159.

6. Farkhatdinov, I., Hayward, V., and Berthoz, A. On the benefits of head stabilization with a view to control balance and locomotion in humanoids. In The 11th IEEE-RAS International Conference on Humanoid Robots, Bled, Slovenia. IEEE, 2011, 147–152.

7. Grossman, W. D. Observers for Discrete-time Nonlinear Systems. PhD thesis, New Jersey Institute of Technology, 1999.

8. Kotta, Ü. Discrete-time models of a nonlinear continuous-time system. Proc. Estonian Acad. Sci. Phys.Math., 1994, 43, 64–78.

9. Lin, Z. and Knospe, C. A saturated high gain control for a benchmark experiment. In The American Control Conference, Chicago, IL, USA (Zhu, J., ed.), Vol. 4. IEEE, 2000, 2644–2648.

10. Maslen, E. Magnetic Bearings. Graduate Seminar Notes, Department of Mechanical and Aerospace Engineering, University of Virginia, 2000.

11. Mizuno, T., Araki, K., and Bleuler, H. Stability analysis of self-sensing magnetic bearing controllers. IEEE Trans. Control Syst. Technol., 1996, 4, 572–579.

 12. Monaco, S. and Normand-Cyrot, D. On the sampling of a linear analytic control system. In The 24th IEEE Conference on Decision and Control, Fort Lauderdale, FL, USA. IEEE, 1985, 1457–1462.

 13. Moraal, P. E. Nonlinear Observer Design: Theory and Applications to Automotive Control. PhD thesis, University of Michigan, 1994.

 14. Moraal, P. E. and Grizzle, J. W. Observer design for nonlinear systems with discrete-time measurements. IEEE Trans. Autom. Control, 1995, 40, 395–404.

 15. Mystkowski, A. Sensitivity and stability analysis of mu-synthesis AMB flexible rotor. Solid State Phenom., 2010, 164, 313–318.

 16. Mystkowski, A. and Pawluszewicz, E. Remarks on some robust nonlinear observer and state-feedback zero-bias control of AMB. In The 16th International Carpathian Control Conference, Szilvásvárad, Hungary (Petráš, I., Podlubny, I., Kačur, J., and Vásárhelyi, J., eds). IEEE, 2015, 328–333.

 17. Mystkowski, A., Pawluszewicz, E., and Dragašius, E. Robust nonlinear position-flux zero-bias control for uncertain AMB system. Int. J. Control, 2015, 88, 1619–1629.

 18. Noshadi, A., Shi, J., Lee, W. S., Shi, P., and Kalam, A. Robust control of an active magnetic bearing system using H and disturbance observer-based control. J. Vib. Control, 2017, 23, 1857–1870.

 19. Torres, M., Sira-Ramirez, H., and Escobar, G. Sliding mode nonlinear control of magnetic bearings. In Proceedings of the 1999 IEEE International Conference on Control Applications, Kohala Coast, HI, USA, Vol. 1. IEEE, 1999, 743–748.

20. Tsiotras, P. and Arcak, M. Low-bias control of AMB subject to voltage saturation: state-feedback and observer designs. IEEE Trans. Control Syst. Technol., 2005, 13, 262–273.

 21. Tsiotras, P. and Velenis, E. Low-bias control of AMB’s subject to saturation constraints. In Proceedings of the 2000 IEEE International Conference on Control Applications, Anchorage, AK, USA. IEEE, 2000, 138–143.

22. Tsiotras, P., Wilson, B., and Bartlett, R. Control of zero-bias magnetic bearings using control Lyapunov functions. In Proceedings of he 39th IEEE Conference on Decision and Control, Sydney, Australia, Vol. 4. IEEE, 2000, 4048–4053.

23. Tsiotras, P. and Wilson, B. C. Zero- and low-bias control designs for active magnetic bearings. IEEE Trans. Control Syst. Technol., 2003, 11, 889–904.

 24. Vischer, D. and Bleuler, H. Self-sensing active magnetic levitation. IEEE Trans. Magn., 1993, 29, 1276–1281.


Back to Issue