eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Effect of Pb(Zn1/3Nb2/3)O3 addition on structural, dielectric, Raman, and ferroelectric properties of BaTiO3 ceramics; pp. 409–415

Jan Suchanicz, Halina Czternastek, Kamila Kluczewska, Piotr Czaja, Adrian Węgrzyn, Mariusz Sokolowski, Erazm Maria Dutkiewicz, Jerzy Szczęsny

A (1-x)BaTiO3xPb(Zn1/3Nb2/3)O3 ((1-x)BT–xPZN) system with a low content of PZN (x = 0, 0.025, and 0.05) was prepared by the spark plasma sintering process. X-ray diffraction analysis exhibited that the obtained specimens possessed the perovskite structure with tetragonal symmetry and underwent a sequence of phase transformations characteristic of pure BT. The microstructure study showed a dense structure in good agreement with that of above 95% relative density determined by the Archimedes method. Dielectric measurements revealed that the maximum of electric permittivity was broadened and shifted after the PZN doping of BT. The Raman spectra were similar for all samples in agreement with the X-ray data. It was shown that the PZN doping of BT caused a worsening of ferroelectric properties. The obtained results are discussed in terms of an increased degree of crystal structure disorder, which creates local elastic and electric fields. The investigated ceramics are considered to be a good starting point for low-lead electronic materials.


1. Moulson, A. J. and Herbert, J. M. Electroceramics. Chapman and Hall, London, 1990.

2. Hertling, G. H. Ferroelectric ceramics: history and technology. J. Am. Cer. Soc., 1999, 82, 797–918.

3. Nogas-Ćwikiel, E. and Suchanicz, J. Fabrication of 0.95BaTiO3–0.05Pb(Mg1/3Nb2/3)O3 ceramics by conventional solid state reaction method. Arch. Metall. Mater., 2013, 58, 1397–1399.

4. Suchanicz, J., Świerczek, K., Nogas-Ćwikiel, E., Konieczny, K., and Sitko, D. PbMg1/3Nb2/3O3-doping effects on structural, thermal, Raman, dielectric and ferroelectric properties of BaTiO3 ceramics. J. Eur. Cer. Soc., 2015, 35, 1777–1783.

5. Kreisel, J., Glazer, A. M., Jones, G. O., Thomas, P. A., Abello, P. A., and Lucazeau, G. An X-ray diffraction and Raman spectroscopy investigation of A-site sub­stituted perovskite compounds: the (Na1-xKix)0.5Bi0.5TiO3 (0<x<1) solid solution. J. Phys. Condens. Matter., 2000, 12, 3267–3280.

6. Farhi, R., El Marssi, M., Simon, A., and Ravez, J. A Raman and dielectric study of ferroelectric Ba(Ti1-xZrx)O3ceramics. EPJ B, 1999, 9, 599–604.

7. Ziębińska, A., Rytz, D., Szot, K., Górny, M., and Roleder, K. Birefringence above Tc in single crystals of barium titanate. J. Phys., Condens. Matter., 2008, 20, 142202 (1–5).

8. Ko, J.-H., Kim, T. H., Roleder, K., Rytz, D., and Kojima, S. Precursor dynamics in the ferroelectric phase transition of barium titanate single crystals studied by Brillouin light scattering. Phys. Rev. B., 2011, 84, 094111 (1–6).

9. Bussmann-Holder, A., Beige, H., and Volkel, G. Precursor effects, broken local symmetry, and coexistence of order-disorder and displacive dynamics in perovskite ferroelectrics. Phys. Rev. B., 2009, 79, 184111 (1–6).

10. Zalar, B., Laguta, V. V., and Blinc, R. NMR evidence for the coexistence of order-disorder and displacive components in barium titanate. Phys. Rev. Lett., 2003, 90, 037601–037612.

Back to Issue