eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Fluorescent nanodiamond array deposition on porous anodized aluminum oxide using asperity assisted capillary force assembly; pp. 416–421

Uldis Malinovskis, Andris Berzins, Janis Smits, Florian H. Gahbauer, Ruvin Ferber, Donats Erts, Juris Prikulis

Array ordering of nanodiamonds with nitrogen-vacancy centers using porous anodized aluminum oxide (PAAO) templates is studied. Particle sorting and array formation are demonstrated with a polydisperse suspension of irregularly shaped diamonds with 28 nm number mean value diameter. The assembly is governed by a balance of withdrawal speed and evaporation driven particle flux, which is influenced by the asperities of the PAAO surface during the capillary and convective assembly dip-coating process. The resulting structures are dense (50 nm average center separation) isolated (non-touching) nanoparticle arrays with a size distribution that matches the topology of the template surface. The fluorescence signal is detected from arrays with an approximately 1:1 particle/pore filling ratio.



1. Wort, C. J. H. and Balmer, R. S. Diamond as an electronic material. Mater. Today, 2008, 11, 22–28.

2. Albrecht, A., Koplovitz, G., Retzker, A., Jelezko, F., Yochelis, S., Porath, D., et al. Self-assembling hybrid diamond-biological quantum devices. New J. Phys., 2014, 16(9), 093002.

3. Yu, S. J., Kang, M. W., Chang, H. C., Chen, K. M., and Yu, Y. C. Bright fluorescent nanodiamonds: no photobleaching and low cytotoxicity. J. Am. Chem. Soc., 2005, 127(50), 17604–17605.

4. Schietinger, S., Barth, M., Aichele, T., and Benson, O. Plasmon-enhanced single photon emission from a nanoassembled metal-diamond hybrid structure at room temperature. Nano Lett., 2009, 9(4), 1694–1698.

5. Smits, J., Berzins, A., Gahbauer, F. H., Ferber, R., Erglis, K., Cebers, A., et al. Estimating the magnetic moment of microscopic magnetic sources from their magnetic field distribution in a layer of nitrogen-vacancy (NV) centres in diamond. Eur. Phys. J. Appl. Phys., 2016, 73(2), 20701.

6. Mochalin, V. N, Shenderova, O., Ho, D., and Gogotsi, Y. The properties and applications of nanodiamonds. Nat. Nanotechnol., 2011, 7(1), 11–23.

7. Dimitrov, A. S. and Nagayama, K. Continuous convective assembling of fine particles into two-dimensional arrays on solid surfaces. Langmuir, 1996, 12(5), 1303–1311.

8. Malaquin, L., Kraus, T., Schmid, H., Delamarche, E., and Wolf, H. Controlled particle placement through convective and capillary assembly. Langmuir, 2007, 23(23), 11513–11521.

9. Huang, C. H., Lin, H. Y., Tzeng, Y., Fan, C. H., Liu, C. Y., Li, C. Y., et al. Optical characteristics of pore size on porous anodic aluminium oxide films with embedded silver nanoparticles. Sens. Actuators A Phys., 2012, 180, 49–54.

10. Baitimirova, M., Pastare, A., Katkevics, J., Viksna, A., Prikulis, J., and Erts, D. Gold nanowire synthesis by semi-immersed nanoporous anodic aluminium oxide templates in potassium dicyanoaurate-hexacyanoferrate electrolyte. Micro Nano Lett., 2014, 9(11), 761–765.

11. Polyakov, B., Prikulis, J., Grigorjeva, L., Millers, D., Daly, B., Holmes, J. D., et al. Photoconductivity of germanium nanowire arrays incorporated in anodic aluminum oxide. J. Phys. Conf. Ser., 2007, 61(1), 283–287.

12. Masuda, H. and Satoh, M. Fabrication of gold nanodot array using anodic porous alumina as an evaporation mask. Jpn. J. Appl. Phys., 1996, 35 (Part 2, No. 1B), L126–L129.

13. Zhan, Z. and Lei, Y. Sub-100-nm nanoparticle arrays with perfect ordering and tunable and uniform dimensions fabricated by combining nanoimprinting with ultrathin alumina membrane technique. ACS Nano, 2014, 8(4), 3862–3868.

14. Lee, W. and Park, S. J. Porous anodic aluminum oxide: anodization and templated synthesis of functional nanostructures. Chem. Rev., 2014, 114(15), 7487–7556.

15. Hornyak, G., Kr¨oll, M., Pugin, R., Sawitowski, T., Schmid, G., Bovin, J. O., et al. Gold clusters and colloids in alumina nanotubes. Chem. Eur. J., 1997, 3(12), 1951–1956.

16. Hsu, C. and Liu, H. H. Optical behaviours of two dimensional Au nanoparticle arrays within porous anodic alumina. J. Phys. Conf. Ser., 2007, 61, 440–444.

17. Seo, I., Kwon, C. W., Lee, H. H., Kim, Y. S., Kim, K. B., and Yoon, T. S. Completely filling anodic aluminum oxide with maghemite nanoparticles by dip coating and their magnetic properties. Electrochem. Solid State Lett., 2009, 12(9), K59.

18. Park, H., Kim, T. H., Kang, S. W., and Jeong, S. H. Nanoscale reaction vessels: highly ordered nanocrystal arrays inside porous anodic alumina nanowells. Int. J. Electrochem. Sci., 2015, 10, 8447–8453.

19. Gordon, M. J. and Peyrade, D. Separation of colloidal nanoparticles using capillary immersion forces. Appl. Phys. Lett., 2006, 89(5), 053112.

20. Kuemin, C., Cathrein Huckstadt, K., L¨ortscher, E., Rey, A., Decker, A., Spencer, N. D., and Wolf, H. Selective assembly of sub-micrometer polymer particles. Adv. Mater., 2010, 22(25), 2804–2808.

21. Virganaviˇcius, D., Juod˙enas, M., Tamuleviˇcius, T., Schift, H., and Tamuleviˇcius, S. Investigation of transient dynamics of capillary assisted particle assembly yield. Appl. Surf. Sci., 2017, 406, 136–143.

22. Malinovskis, U., Poplausks, R., Apsite, I., Meija, R., Prikulis, J., Lombardi, F., et al. Ultrathin anodic aluminum oxide membranes for production of dense sub-20 nm nanoparticle arrays. J. Phys. Chem. C., 2014, 118(16), 8685–8690.

23. Malinovskis, U., Berzins, A., Gahbauer, F. H., Ferber, R., Kitenbergs, G., Muiznieks, I., et al. Colloidal nano-particle sorting and ordering on anodic alumina patterned surfaces using templated capillary force assembly. Surf. Coat. Technol., 2017, 326, 264–269.

24. Li, G. H., Zhang, Y., Wu, Y. C., and Zhang, L. D. Wavelength dependent photoluminescence of anodic alumina membranes. J. Phys. Cond. Matter, 2003, 15(49), 8663–8671.

25. Chang, K., Eichler, A., Rhensius, J., Lorenzelli, L., and Degen, C. L. Nanoscale imaging of current density with a single-spin magnetometer. Nano Lett., 2017, 17(4), 2367–2373.


Back to Issue