eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2022): 0.9
Characterization of electron beam cross-linked ethylene–octene copolymer composites with carbon nanotubes; pp. 377–382

Ingars Reinholds, Zhenija Roja, Remo Merijs Meri, Janis Zicans

The effect of radiation cross-linking on the properties of Engage® 8200 ethylene–octene copolymer (EOC) with multi-walled carbon nanotube (CNT) nanocomposites was evaluated. An ultra-sound assisted technique combined with thermoplastic mixing was used to make EOC/CNT composites with a wide ratio of CNT concentrations (0 to 15 wt%). Composite films were irradiated by 5 MeV accelerated electrons at relatively high doses (150 and 300 kGy), and their structure and mechanical and dielectric properties were compared. Gel fraction measurements indicated dominant cross-linking of EOC with the rise of the absorbed dose. Cross-linking as well as chain scission of macromolecules in the presence of CNTs caused a certain change in mechanical properties. Dielectric measurements indicated a decrease in ac conductivity and a change in dielectric permittivity, mainly associated with prevented charge movements between CNTs incorporated in the spatially cross-linked macromolecular structure of EOC compared to that of unirradiated EOC/CNT composites.


   1. Nambiar, S. and Yeow, J. T. Polymer-composite materials for radiation protection. Appl. Mater. Interfaces, 2012, 4, 5717–5726.

   2. Kasani, H., Khodabakhsh, R., Ahmadi, M. T., Ochbelagh, D. R., and Ismail, R. Electrical properties of MWCNT/HDPE composite-based MSM structure under neutron irradiation. J. Electron. Mater., 2017, 46, 2548–2555.

   3. Huang, G., Ni, Z., Chen, G., Li, G., and Zhao, Y. Investigation of irradiated graphene oxide/ultra-high-molecular-weight polyethylene nanocomposites by ESR and FTIR spectroscopy. Fuller. Nanotub. Car. N., 2016, 24, 698–704.

   4. Suarez, J. C. M. and Mano, E. B. Brittle–ductile transition of gamma-irradiated recycled polyethylenes blend. Polym. Test., 2000, 19(6), 607–616.

   5. Suljovrujic, E. Dielectric study of post-irradiation effects in gamma-irradiated polyethylenes. Rad. Phys. Chem., 2010, 79(7), 751–757.

   6. Castell, P., Martinez-Morlanes, M. J., Alonso, P. J., Martinez, M. T., and Puertolas, J. A. A novel approach to the chemical stabilization of gamma-irradiated ultrahigh molecular weight polyethylene using arc-discharge multi-walled carbon nanotubes. J. Mater. Sci, 2013, 48, 6549–6557.

   7. Kolanthai, E., Bose, S., Bhagyashree, K. S., Bhat, S. V., Asokan, K., Kanjilal, D., and Chatterjee, K. Graphene scavenges free radicals to synergistically enhance structural properties in a gamma-irradiated polyethylene composite through enhanced interfacial interactions. PCCP, 2015, 17, 22900–22910.

   8. Ghafoor, B., Mehmood, M. S., Shahid, U., Baluch, M. A., and Yasin, T. Influence of γ-ray modified MWCNTs on the structural and thermal properties of high-density polyethylene. Rad. Phys. Chem., 2016, 125, 145–150.

   9. Yang, J., Li, X., Liu, C., Rui, E., and Wang, L. Effects of electron irradiation on LDPE/MWCNT composites. Nucl. Instrum. Meth. B, 2015, 365, 55–60.

10. Zhai, Y., Zhang, R., Yang, W., and Yang, M. Effects of interphase on the dispersion of MWCNTs in ethylene-α-octene copolymers revealed by solid-state NMR spectroscopy. Polymer, 2017, 114, 44–53.

11. Sedláková, Z., Clarizia, G., Bernardo, P., Jansen, J. C., Slobodian, P., Svoboda, P., et al. Carbon nanotube- and carbon fiber-reinforcement of ethylene-octene copolymer membranes for gas and vapor separation. Membranes, 2014, 4(1), 20–39.

12. Vasileiou, A. A., Kontopoulou, M., Gui, H., and Docoslis, A. Correlation between the length reduction of carbon nanotubes and the electrical percolation threshold of melt compounded polyolefin composites. Appl. Mater. Interfaces, 2015, 7, 1624–1631.

13. Petrie, K. G., Osazuwa, O., Docoslis, A., and Kontopoulou, M. Controlling MWCNT partitioning and electrical conductivity in melt compounded poly­propylene/poly (ethylene-co-octene) blends. Polymer, 2017, 114, 231–241.

14. Aghjeh, M. R., Khonakdar, H. A., Jafari, S. H., Zschech, C., Gohs, U., and Heinrich, G. Rheological, morphological and mechanical investigations on ethylene octene copolymer toughened polypropylene prepared by continuous electron induced reactive processing. RSC Advances, 2016, 6, 24651–24660.

15. Li, J., Peng, J., Qiao, J., Jin, D., and Wei, G. Effect of gamma irradiation on ethylene–octene copolymers. Rad. Phys. Chem., 2002, 63(3), 501–504.

16. Ramachandran, P., Naskar, K., and Nando, G. B. Effect of electron beam irradiation on the structure–property relationship of ethylene octene copolymer and poly­dimethyl siloxane rubber blends. Rubber Chem. Technol., 2016, 89(3), 477–498.

17. Perraud, S., Vallat, M. F., and Kuczynski, J. Radiation crosslinking of poly(ethylene-co-octene) with electron beam radiation. Macromol. Mater. Eng., 2003, 288, 117–123.

18. Svoboda, P. High-temperature study of radiation cross-linked ethylene–octene copolymers. Polymer Bull., 2017, 74(1), 121–144.

19. Maqbool, S. A., Mehmood, M. S., Mukhtar, S. S., Baluch, M. A., Khan, S., Yasin, T., and Khan, Y. Dielectric relaxation and ac conduction in γ-irradiated UHMWPE/MWCNTs nano composites: impedance spectroscopy analysis. Rad. Phys. Chem., 2017, 134, 40–46.

Back to Issue