ESTONIAN ACADEMY
PUBLISHERS
eesti teaduste
akadeemia kirjastus
PUBLISHED
SINCE 1952
 
Proceeding cover
proceedings
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Fabrication and characterization of ethylene–octene copolymer composites with ionic liquid functionalized carbon nanotubes; pp. 347–353

Full article in PDF format | https://doi.org/10.3176/proc.2017.4.05

Authors
Remo Merijs Meri, Janis Zicans, Tatjana Ivanova, Ruta Saldabola, Ingars Reinholds, Zhenija Roja, Maik Feldmann, Hans-Peter Heim

Abstract

Modification of multi-walled carbon nanotubes (MWCNTs) by means of imidazolium ionic liquid (IL) was performed. Structural characterization of funtionalized nanofillers (IL-f-MWCNTs) was made by means of Raman spectroscopy and transmission electron microscopy. MWCNTs and IL-f-MWCNTs were introduced within ethylene octane copolymer (EOC) with octene co-monomer content of 17% by using the masterbatch approach. The efficiency of the carbonaceous nanofiller distribution within the polymer matrix was characterized by means of scanning electron microscopy. It was shown that MWCNTs and IL-f-MWCNTs were both effective in rising storage modulus, tensile modulus, stress-at break, and electrical conductivity of EOC-based nanocomposites along with the increasing nanofiller content. Besides, it was observed that the modification efficiency of the investigated EOC matrix composites by IL-f-MWCNTs was greater in comparison to pristine MWCNTs.


References

   1. Meer, S., Kausar, A., and Iqbal, T. Trends in conducting polymer and hybrids of conducting polymer/carbon nanotube: a review. Polym. Plast. Technol. Eng., 2016, 55, 1416–1440.
https://doi.org/10.1080/03602559.2016.1163601

   2. Kausar, A. Advances in polymer/fullerene nanocomposite: a review on essential features and applications. Polym. Plast. Technol. Eng., 2017, 56(6), 594–605.
https://doi.org/10.1080/03602559.2016.1233278

   3. Kausar, A., Rafique, I., and Muhammad, B. Review of applications of polymer/carbon nanotubes and epoxy/ CNT composites. Polym. Plast. Technol. Eng., 2016, 55, 1167–1191.
https://doi.org/10.1080/03602559.2016.1163588

   4. Yin, J. and Deng, B. Polymer-matrix nanocomposite membranes for water treatment. J. Memb. Sci., 2015, 479, 256–275.
https://doi.org/10.1016/j.memsci.2014.11.019

   5. Paramane, A. S. and Kumar, K. S. A review on nano­composite based electrical insulations. Trans. Electr. Electron. Mater., 2016, 17(5), 239.
https://doi.org/10.4313/TEEM.2016.17.5.239

   6. Selim, M. S., Shenashen, M. A., El-Safty, S. A., Higazy, S. A., Selim, M. M., Isago, H., and Elmarak, A. Recent progress in marine foul-release polymeric nanocomposite coatings. Prog. Mater. Sci., 2017, 87, 1–32.
https://doi.org/10.1016/j.pmatsci.2017.02.001

   7. Khin, M. M., Nair, A. S., Babu, V. J., Murugan, R., and Ramakrishna, S. A review on nanomaterials for environ­mental remediation. Energy Environ. Sci., 2012, 5, 8075–8109.
https://doi.org/10.1039/c2ee21818f

   8. Bianco, A., Kostarelos, K., and Prato, M. Applications of carbon nanotubes in drug delivery. Curr. Opin. Chem. Biol., 2005, 9, 674–679.
https://doi.org/10.1016/j.cbpa.2005.10.005

   9. Ciardelli, F., Coiai, S., Passaglia, E., Pucci, A., and Ruggeri, G. Nanocomposites based on polyolefins and functional thermoplastic materials. Polym. Int., 2008, 57, 805–836.
https://doi.org/10.1002/pi.2415

10. Fujigaya, T. and Nakashima, N. Soluble carbon nanotubes and nanotube-polymer composites, J. Nanosci. Nano­technol., 2012, 12, 1717–1738.

11. Punetha, V. D., Rana, S., Yoo, H. J., Chaurasia, A., McLeskey, J. T. Jr., Ramasamy, M. S., et al. Functionalization of carbon nanomaterials for advanced polymernano­composites: a comparison study between CNT and graphene. Prog. Polym. Sci., 2017, 67, 1–47.
https://doi.org/10.1016/j.progpolymsci.2016.12.010

12. Kim, T. Y., Lee, H. W., Stoller, M., Dreyer, D. R., Bielawski, C. W., Ruoff, R. S., et al. High-performance supercapacitors based on poly(ionic liquid)-modified graphene electrodes. ACS Nano, 2011, 5, 436–442.
https://doi.org/10.1021/nn101968p

13. Polo-Luque, M. L., Simonet, B. M., and Valcarcel, M. Functionalization and dispersion of carbon nanotubes in ionic liquids. TrAC Trends Anal. Chem., 2013, 47, 99–110.
https://doi.org/10.1016/j.trac.2013.03.007

14. Tunckol, M., Durand, J., and Serp, P. Carbon nano­material–ionic liquid hybrids. Carbon, 2012, 50, 4303–4334.
https://doi.org/10.1016/j.carbon.2012.05.017

15. Mensah, B., Kim, H. G., Lee, J.-H., Arepalli, S., and Nah, C. Carbon nanotube-reinforced elastomeric nano­composites: a review. Int. J. Smart Nano Mater., 2015, 6(4), 211–238.
https://doi.org/10.1080/19475411.2015.1121632

16. Ivanova, T., Merijs Meri, R., Zicans, J., Grigalovica, A., Roja, Zh., and Reinholds, I. Impact of non-functiona­lized and ionic liquid modified carbon nanotubes on mechanical and thermal properties of ethylene- octene copolymer nanocomposites. IOP Conf. Ser.: Mater. Sci. Eng., 2016, 111, 1-8, 111 012019.

17. Kim, Y. S., Cha, A., Shin, J. Y., Jeon, H. J., Shim, J. H., Lee, C., and Lee, S. G. High-density assembly of gold nanoparticles with zwitterionic carbon nanotubes and their electrocatalytic activity in oxygen reduction reaction. Chem. Commun., 2012, 48, 8940–8942.
https://doi.org/10.1039/c2cc34785g


Back to Issue