eesti teaduste
akadeemia kirjastus
SINCE 1952
Proceeding cover
of the estonian academy of sciences
ISSN 1736-7530 (Electronic)
ISSN 1736-6046 (Print)
Impact Factor (2020): 1.045

Stability and stabilizability of linear time-delay systems on homogeneous time scales; pp. 124–136

Full article in PDF format |

Juri Belikov, Zbigniew Bartosiewicz


This paper provides necessary and sufficient conditions for the exponential stability of a linear retarded time-delay system defined on a homogeneous time scale. Conditions are formulated in terms of a characteristic equation associated with the system. This approach is then used to develop feedback stabilizability criteria.


1. Åström, K. J. and Wittenmark, B. Computer-controlled Systems: Theory and Design. Dover Publications, New York, 2011.

2. Bartosiewicz, Z., Piotrowska, E., andWyrwas, M. Stability, stabilization and observers of linear control systems on time scales. In Conference on Decision and Control, New Orleans, LA, November 2007, 2803–2808.

3. Bohner, M. and Guseinov, G. Sh. The h-Laplace and q-Laplace transforms. J. Math. Anal. Appl., 2010, 365(1), 75–92.

4. Bohner, M. and Peterson, A. Dynamic Equations on Time Scales: An Introduction with Applications. Birkh¨auser, Boston, 2001.

5. Bohner, M. and Peterson, A. Laplace transform and Z-transform: unification and extension. Methods Appl. Anal., 2002, 9(1), 151–158.

6. Cieśliński, J. L. New definitions of exponential, hyperbolic and trigonometric functions on time scales. J. Math. Anal. Appl., 2012, 388(1), 8–22.

7. Davis, J. M., Gravagne, I. A., and Marks, R. J. II. Bilateral Laplace transforms on time scales: convergence, convolution, and the characterization of stationary stochastic time series. Circ. Syst. Signal PR., 2010, 29(6), 1141–1165.

8. Du, B., Liu, Y., Batarfi, H. A., and Alsaadi, F. E. Almost periodic solution for a neutral-type neural networks with distributed leakage delays on time scales. Neurocomputing, 2016, 173(3), 921–929.

9. Fiagbedzi, Y. A. and Pearson, A. E. Feedback stabilization of linear autonomous time lag systems. IEEE Trans. Autom. Control, 1986, 31(9), 847–855.

10. Gu, K., Kharitonov, V. L., and Chen, J. Stability of Time-delay Systems. Birkhäuser, Boston, 2003.

11. Hale, J. K. Functional Differential Equations. Springer-Verlag, NY, 1971.

12. Hilger, S. Ein Masskettenkalk¨ul mit Anwendung auf Zentrumsmannigfaltigkeiten. PhD thesis, Universität Würzburg, 1988.

13. Lakshmikantham, V. and Vatsala, A. S. Hybrid systems on time scales. J. Comput. Appl. Math., 2002, 141(1), 227–235.

14. Ma, Y. and Sun, J. Stability criteria of delay impulsive systems on time scales. Nonlinear Anal., 2007, 67(4), 1181–1189.

15. Mozyrska, D., Pawłuszewicz, E., and Torres, D. F. M. The Riemann-Stieltjes integral on time scales. AJMAA, 2010, 7(1), 1–14.

16. Pandolfi, L. On feedback stabilization of functional differential equations. Boll. Un. Mat. Ital., 1975, 11(4), 626–635.

17. Pötzsche, C., Siegmund, S., and Wirth, F. A spectral characterization of exponential stability for linear time-invariant systems on time scales. DCSD-A, 2003, 9(5), 1223–1241.

18. Sontag, E. D. Mathematical Control Theory: Deterministic Finite Dimensional Systems. Springer, New York, 1998.

19. Wang, P. and Liu, X. ϕ0-Stability of hybrid impulsive dynamic systems on time scales. J. Math. Anal. Appl., 2007, 334(2), 1220–1231.

20. Zhang, C. and Sun, Y. Stability analysis of linear positive systems with time delays on time scales. Adv. Differ. Equ.-NY, 2012, 2012(1), 1–11.

Back to Issue